Online Camera–LiDAR Calibration Monitoring and Rotational Drift Tracking

被引:0
|
作者
Moravec, Jaroslav [1 ]
Sara, Radim [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Cybernet, Prague 16627, Czech Republic
关键词
Calibration and identification; computer vision for transportation; LiDAR-camera systems; sensor fusion; CAMERA; VISION; LIDAR;
D O I
10.1109/TRO.2023.3347130
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The relative poses of visual perception sensors distributed over a vehicle's body may vary due to dynamic forces, thermal dilations, or minor accidents. This article proposes two methods, Online CAlibration MOnitoring (OCAMO) and LTO, that monitor and track the LiDAR-camera extrinsic calibration parameters online. Calibration monitoring provides a certificate for reference-calibration parameters validity. Tracking follows the calibration parameters drift in time. OCAMO is based on an adaptive online stochastic optimization with a memory of past evolution. LTO uses a fixed-grid search for the optimal parameters per frame and without memory. Both methods use low-level point-like features, a robust kernel-based loss function, and work with a small memory footprint and computational overhead. Both include a preselection of informative data, which limits their divergence. The statistical accuracy of both calibration monitoring methods is over 98%, whereas OCAMO monitoring can detect small decalibrations better, and LTO monitoring reacts faster on abrupt decalibrations. The tracking variants of both methods follow random calibration drift with an accuracy of about 0.03(degrees) in the yaw angle.
引用
收藏
页码:1527 / 1545
页数:19
相关论文
共 50 条
  • [41] Extrinsic Calibration of a Single Line Scanning Lidar and a Camera
    Kwak, Kiho
    Huber, Daniel F.
    Badino, Hernan
    Kanade, Takeo
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 3283 - 3289
  • [42] A Novel Method for LiDAR Camera Calibration by Plane Fitting
    Chai, Ziqi
    Sun, Yuxin
    Xiong, Zhenhua
    2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2018, : 286 - 291
  • [43] A cooperative LiDAR-camera scheme for extrinsic calibration
    Zamanakos, Georgios
    Tsochatzidis, Lazaros
    Amanatiadis, Angelos
    Pratikakis, Ioannis
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [44] Extrinsic Calibration and Odometry for Camera-LiDAR Systems
    Shi, Chenghao
    Huang, Kaihong
    Yu, Qinghua
    Xiao, Junhao
    Lu, Huimin
    Xie, Chenggang
    IEEE ACCESS, 2019, 7 : 120106 - 120116
  • [45] Estimation of Camera Calibration Uncertainty using LIDAR Data
    Ortega, Agustin
    Galego, Ricardo
    Ferreira, Ricardo
    Bernardino, Alexandre
    Gaspar, Jose
    Andrade-Cetto, Juan
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 361 - 366
  • [46] Targetless Camera-LiDAR Calibration in Unstructured Environments
    Angel Munoz-Banon, Miguel
    Candelas, Francisco A.
    Torres, Fernando
    IEEE ACCESS, 2020, 8 : 143692 - 143705
  • [47] Optimising the selection of samples for robust lidar camera calibration
    Tsai, Darren
    Worrall, Stewart
    Shan, Mao
    Lohr, Anton
    Nebot, Eduardo
    IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2021, 2021-September : 2631 - 2638
  • [48] Automatic targetless LiDAR-camera calibration: a survey
    Li, Xingchen
    Xiao, Yuxuan
    Wang, Beibei
    Ren, Haojie
    Zhang, Yanyong
    Ji, Jianmin
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9949 - 9987
  • [49] Evaluation of LIDAR and Camera External Reference Calibration Methods
    Fu, Yao
    Luo, Dean
    Huang, He
    Xue, Yizhou
    Yin, Tong
    SENSORS AND MATERIALS, 2021, 33 (12) : 4489 - 4501
  • [50] LiDAR-Camera Calibration Using Line Correspondences
    Bai, Zixuan
    Jiang, Guang
    Xu, Ailing
    SENSORS, 2020, 20 (21) : 1 - 17