Online Camera–LiDAR Calibration Monitoring and Rotational Drift Tracking

被引:0
|
作者
Moravec, Jaroslav [1 ]
Sara, Radim [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Cybernet, Prague 16627, Czech Republic
关键词
Calibration and identification; computer vision for transportation; LiDAR-camera systems; sensor fusion; CAMERA; VISION; LIDAR;
D O I
10.1109/TRO.2023.3347130
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The relative poses of visual perception sensors distributed over a vehicle's body may vary due to dynamic forces, thermal dilations, or minor accidents. This article proposes two methods, Online CAlibration MOnitoring (OCAMO) and LTO, that monitor and track the LiDAR-camera extrinsic calibration parameters online. Calibration monitoring provides a certificate for reference-calibration parameters validity. Tracking follows the calibration parameters drift in time. OCAMO is based on an adaptive online stochastic optimization with a memory of past evolution. LTO uses a fixed-grid search for the optimal parameters per frame and without memory. Both methods use low-level point-like features, a robust kernel-based loss function, and work with a small memory footprint and computational overhead. Both include a preselection of informative data, which limits their divergence. The statistical accuracy of both calibration monitoring methods is over 98%, whereas OCAMO monitoring can detect small decalibrations better, and LTO monitoring reacts faster on abrupt decalibrations. The tracking variants of both methods follow random calibration drift with an accuracy of about 0.03(degrees) in the yaw angle.
引用
收藏
页码:1527 / 1545
页数:19
相关论文
共 50 条
  • [21] Advancements in fusion calibration technology of lidar and camera
    Wang S.
    Meng Z.
    Gao N.
    Zhang Z.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (08):
  • [22] Targetless Calibration of a Lidar - Perspective Camera Pair
    Tamas, Levente
    Kato, Zoltan
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 668 - 675
  • [23] Automatic targetless LiDAR–camera calibration: a survey
    Xingchen Li
    Yuxuan Xiao
    Beibei Wang
    Haojie Ren
    Yanyong Zhang
    Jianmin Ji
    Artificial Intelligence Review, 2023, 56 : 9949 - 9987
  • [24] Extrinsic Calibration of a Small FoV LiDAR and a Camera
    Zhao, Yang
    Huang, Kaihong
    Lu, Huimin
    Xiao, Junhao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3915 - 3920
  • [25] Efficient Camera-LiDAR Calibration Using Accumulated LiDAR Frames
    Lee, Dongkyu
    Kee, Seok-Cheol
    IEEE ACCESS, 2022, 10 : 132349 - 132362
  • [26] LiDAR-Binocular Camera Calibration by Minimizing LiDAR Isotropic Error
    Chen Z.
    Liu Z.
    Zhang X.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 1 - 9
  • [27] RGBDTCalibNet: End-to-end Online Extrinsic Calibration between a 3D LiDAR, an RGB Camera and a Thermal Camera
    Mharolkar, Sanat
    Zhang, Jun
    Peng, Guohao
    Liu, Yiyao
    Wang, Danwei
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3577 - 3582
  • [28] INDIRECT CAMERA CALIBRATION FOR SURGERY TRACKING
    Tillapaugh, Bennet
    Savakis, Andreas
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1083 - 1086
  • [29] Automatic Calibration and Registration of Lidar and Stereo Camera without Calibration Objects
    John, Vijay
    Long, Qian
    Liu, Zheng
    Mita, Seiichi
    2015 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2015, : 231 - 237
  • [30] CALNet: LiDAR-Camera Online Calibration With Channel Attention and Liquid Time-Constant Network
    Shang, Hongcheng
    Hu, Bin-Jie
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 5147 - 5154