Online Camera–LiDAR Calibration Monitoring and Rotational Drift Tracking

被引:0
|
作者
Moravec, Jaroslav [1 ]
Sara, Radim [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Cybernet, Prague 16627, Czech Republic
关键词
Calibration and identification; computer vision for transportation; LiDAR-camera systems; sensor fusion; CAMERA; VISION; LIDAR;
D O I
10.1109/TRO.2023.3347130
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The relative poses of visual perception sensors distributed over a vehicle's body may vary due to dynamic forces, thermal dilations, or minor accidents. This article proposes two methods, Online CAlibration MOnitoring (OCAMO) and LTO, that monitor and track the LiDAR-camera extrinsic calibration parameters online. Calibration monitoring provides a certificate for reference-calibration parameters validity. Tracking follows the calibration parameters drift in time. OCAMO is based on an adaptive online stochastic optimization with a memory of past evolution. LTO uses a fixed-grid search for the optimal parameters per frame and without memory. Both methods use low-level point-like features, a robust kernel-based loss function, and work with a small memory footprint and computational overhead. Both include a preselection of informative data, which limits their divergence. The statistical accuracy of both calibration monitoring methods is over 98%, whereas OCAMO monitoring can detect small decalibrations better, and LTO monitoring reacts faster on abrupt decalibrations. The tracking variants of both methods follow random calibration drift with an accuracy of about 0.03(degrees) in the yaw angle.
引用
收藏
页码:1527 / 1545
页数:19
相关论文
共 50 条
  • [1] Online Cross-Calibration of Camera and LIDAR
    Blaga, Bianca-Cerasela-Zelia
    Nedevschi, Sergiu
    2017 13TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2017, : 295 - 301
  • [2] Temporal and Spatial Online Integrated Calibration for Camera and LiDAR
    Wang, Shouan
    Zhang, Xinyu
    Zhang, GuiPeng
    Xiong, Yijin
    Tian, Ganglin
    Guo, Shichun
    Li, Jun
    Lu, Pingping
    Wei, Junqing
    Tian, Lei
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3016 - 3022
  • [3] Online Camera-LiDAR Calibration with Sensor Semantic Information
    Zhu, Yufeng
    Li, Chenghui
    Zhang, Yubo
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 4970 - 4976
  • [4] An Interactive LiDAR to Camera Calibration
    Lyu, Yecheng
    Bai, Lin
    Elhousni, Mahdi
    Huang, Xinming
    2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [5] Online Calibration Between Camera and LiDAR With Spatial-Temporal Photometric Consistency
    Jing, Yonglin
    Yuan, Chongjian
    Hong, Xiaoping
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1027 - 1034
  • [6] Visual Odometry Driven Online Calibration for Monocular LiDAR-Camera Systems
    Chien, Hsiang-Jen
    Klette, Reinhard
    Schneider, Nick
    Franke, Uwe
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2848 - 2853
  • [7] Online Extrinsic Calibration on LiDAR-Camera System with LiDAR Intensity Attention and Structural Consistency Loss
    An, Pei
    Gao, Yingshuo
    Wang, Liheng
    Chen, Yanfei
    Ma, Jie
    REMOTE SENSING, 2022, 14 (11)
  • [8] Extrinsic Calibration of Lidar and Camera with Polygon
    Liao, Qinghai
    Chen, Zhenyong
    Liu, Yang
    Wang, Zhe
    Liu, Ming
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 200 - 205
  • [9] On-the-Fly Camera and Lidar Calibration
    Nagy, Balazs
    Benedek, Csaba
    REMOTE SENSING, 2020, 12 (07)
  • [10] Keypoint-Based LiDAR-Camera Online Calibration With Robust Geometric Network
    Ye, Chao
    Pan, Huihui
    Gao, Huijun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71