DEAUTOCONVOLUTION IN THE TWO-DIMENSIONAL CASE

被引:1
|
作者
Deng, Yu [1 ]
Hofmann, Bernd [1 ]
Werner, Frank [2 ]
机构
[1] Tech Univ Chemnitz, Fac Math, Reichenhainer Str 39-41, D-09107 Chemnitz, Germany
[2] Univ Wurzburg, Inst Math, Emil Fischer Str 30, D-97074 Wurzburg, Germany
关键词
deautoconvolution; inverse problem; ill-posedness; case studies in 2D; Tikhonov-type regularization; iteratively regularized Gauss-Newton method; LAVRENTEV REGULARIZATION; AUTOCONVOLUTION; CONVERGENCE; RATES;
D O I
10.1553/etna_vol59s24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is extensive mathematical literature on the inverse problem of deautoconvolution for a function with support in the unit interval [0, 1] subset of I8, but little is known about the multidimensional situation. This article tries to fill this gap with analytical and numerical studies on the reconstruction of a real function of two real variables over the unit square from observations of its autoconvolution on [0, 2]2 subset of I82 (full data case) or on [0, 1]2 (limited data case). In an L2-setting, twofoldness and uniqueness assertions are proven for the deautoconvolution problem in 2D. Moreover, its ill-posedness is characterized and illustrated. Extensive numerical case studies give an overview of the behaviour of stable approximate solutions to the two-dimensional deautoconvolution problem obtained by Tikhonov-type regularization with different penalties and the iteratively regularized Gauss-Newton method.
引用
收藏
页码:24 / 42
页数:19
相关论文
共 50 条
  • [41] Two-dimensional local density of states in two-dimensional photonic crystals
    Asatryan, AA
    Fabre, S
    Busch, K
    McPhedran, RC
    Botten, LC
    de Sterke, CM
    Nicorovici, NAP
    OPTICS EXPRESS, 2001, 8 (03): : 191 - 196
  • [42] Comparison of two-dimensional and three-dimensional imaging in the case of oncological patients
    Voth, M
    Opfermann, T
    Käpplinger, S
    Gottschild, D
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 2001, 28 (08): : 1078 - 1078
  • [43] Two-Dimensional Nanoparticle Supracrystals: A Model System for Two-Dimensional Melting
    Kim, Jin Young
    Kwon, S. Joon
    Chang, Jae-Byum
    Ross, Caroline A.
    Hatton, T. Alan
    Stellacci, Francesco
    NANO LETTERS, 2016, 16 (02) : 1352 - 1358
  • [44] TWO-DIMENSIONAL ECHOCARDIOGRAPHIC AND CONTRAST TWO-DIMENSIONAL FEATURES OF SINGLE VENTRICLE
    DISESSA, TG
    ZEDNIKOVA, M
    ISABELJONES, J
    HEINS, H
    MENDOZA, G
    STERNLIGHT, B
    FRIEDMAN, WF
    PEDIATRIC CARDIOLOGY, 1982, 3 (04) : 348 - 349
  • [45] On Discretization of a Two-Dimensional Laplace Operator in a Smooth Two-Dimensional Domain
    S. D. Algazin
    Numerical Analysis and Applications, 2021, 14 : 220 - 224
  • [46] On Discretization of a Two-Dimensional Laplace Operator in a Smooth Two-Dimensional Domain
    Algazin, S. D.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2021, 14 (03) : 220 - 224
  • [47] On the theory of slow-particle scattering in the two-dimensional case
    B. Ya. Balagurov
    Physics of Atomic Nuclei, 2010, 73 : 118 - 121
  • [48] DYNAMICAL VORONOI TESSELLATION .1. THE TWO-DIMENSIONAL CASE
    ZANINETTI, L
    ASTRONOMY & ASTROPHYSICS, 1989, 224 (1-2) : 345 - 350
  • [49] About the image of the total signature map in the two-dimensional case
    Monnier, JP
    MANUSCRIPTA MATHEMATICA, 1997, 93 (02) : 143 - 161
  • [50] Singular Fermi surfaces II. The two-dimensional case
    Feldman, Joel
    Salmhofer, Manfred
    REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (03) : 275 - 334