DEAUTOCONVOLUTION IN THE TWO-DIMENSIONAL CASE

被引:1
|
作者
Deng, Yu [1 ]
Hofmann, Bernd [1 ]
Werner, Frank [2 ]
机构
[1] Tech Univ Chemnitz, Fac Math, Reichenhainer Str 39-41, D-09107 Chemnitz, Germany
[2] Univ Wurzburg, Inst Math, Emil Fischer Str 30, D-97074 Wurzburg, Germany
关键词
deautoconvolution; inverse problem; ill-posedness; case studies in 2D; Tikhonov-type regularization; iteratively regularized Gauss-Newton method; LAVRENTEV REGULARIZATION; AUTOCONVOLUTION; CONVERGENCE; RATES;
D O I
10.1553/etna_vol59s24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is extensive mathematical literature on the inverse problem of deautoconvolution for a function with support in the unit interval [0, 1] subset of I8, but little is known about the multidimensional situation. This article tries to fill this gap with analytical and numerical studies on the reconstruction of a real function of two real variables over the unit square from observations of its autoconvolution on [0, 2]2 subset of I82 (full data case) or on [0, 1]2 (limited data case). In an L2-setting, twofoldness and uniqueness assertions are proven for the deautoconvolution problem in 2D. Moreover, its ill-posedness is characterized and illustrated. Extensive numerical case studies give an overview of the behaviour of stable approximate solutions to the two-dimensional deautoconvolution problem obtained by Tikhonov-type regularization with different penalties and the iteratively regularized Gauss-Newton method.
引用
收藏
页码:24 / 42
页数:19
相关论文
共 50 条
  • [31] BILLIARD SCATTERING ON ROUGH SETS: TWO-DIMENSIONAL CASE
    Plakhov, Alexander
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) : 2155 - 2178
  • [32] PERTURBATIVE TREATMENT OF NUCLEAR ROTATIONS - TWO-DIMENSIONAL CASE
    BES, DR
    DUSSEL, GG
    PERAZZO, RPJ
    NUCLEAR PHYSICS A, 1980, 340 (01) : 157 - 182
  • [33] Resonances for magnetic stark Hamiltonians in two-dimensional case
    Dimassi, M
    Petkov, V
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (77) : 4147 - 4179
  • [34] The case for two-dimensional galaxy-galaxy lensing
    Dvornik, Andrej
    Zoutendijk, S. L.
    Hoekstra, Henk
    Kuijken, Konrad
    ASTRONOMY & ASTROPHYSICS, 2019, 627
  • [35] The magnetotelluric anisotropic two-dimensional simulation and case analysis
    Hu Xiang-Yun
    Huo Guang-Pu
    Gao Rui
    Wang Hai-Yan
    Huang Yi-Fan
    Zhang Yun-Xia
    Zuo Bo-Xin
    Cai Jian-Chao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (12): : 4268 - 4277
  • [36] Experimental realization of a two-dimensional to two-dimensional tunnel transistor
    Leuther, A
    Hollfelder, M
    Hardtdegen, H
    Luth, H
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (05) : 772 - 775
  • [37] TWO-DIMENSIONAL LANGMUIR COLLAPSE AND TWO-DIMENSIONAL LANGMUIR CAVITONS
    DYACHENKO, AI
    ZAKHAROV, VE
    RUBENCHIK, AM
    SAGDEEV, RZ
    SHVETS, VF
    JETP LETTERS, 1986, 44 (11) : 648 - 651
  • [38] Two-dimensional instantons with bosonization and physics of adjoint two-dimensional QCD
    Smilga, AV
    PHYSICAL REVIEW D, 1996, 54 (12) : 7757 - 7773
  • [39] Two-dimensional parameter estimation using two-dimensional cyclic statistics
    Wang, Fei
    Wang, Shu-Xun
    Dou, Hui-Jing
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2003, 31 (10): : 1522 - 1525
  • [40] Two-dimensional pattern matching by two-dimensional online tessellation automata
    Polcar, T
    Melichar, B
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2005, 3317 : 327 - 328