Kernel density estimation by genetic algorithm

被引:0
|
作者
Nishida, Kiheiji [1 ]
机构
[1] Hyogo Med Univ, Sch Pharm, Kobe, Hyogo, Japan
关键词
Kernel density estimation; genetic algorithm; data condensation; sparse representation; BREGMAN DIVERGENCE; REGRESSION;
D O I
10.1080/00949655.2022.2134379
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study proposes a data condensation method for multivariate kernel density estimation by genetic algorithm. First, our proposed algorithm generates multiple subsamples of a given size with replacement from the original sample. The subsamples and their constituting data points are regarded as chromosome and gene, respectively, in the terminology of genetic algorithm. Second, each pair of subsamples breeds two new subsamples, where each data point faces either crossover, mutation, or reproduction with a certain probability. The dominant subsamples in terms of fitness values are inherited by the next generation. This process is repeated generation by generation and results in a kernel density estimator with sparse representation in its completion. We confirmed from simulation studies that the resulting estimator can perform better than other well-known density estimators.
引用
收藏
页码:1263 / 1281
页数:19
相关论文
共 50 条
  • [31] Reweighted kernel density estimation
    Hazelton, Martin L.
    Turlach, Berwin A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 3057 - 3069
  • [32] Complementary Kernel Density Estimation
    Miao, Xu
    Rahimi, Ali
    Rao, Rajesh P. N.
    PATTERN RECOGNITION LETTERS, 2012, 33 (10) : 1381 - 1387
  • [33] Robust Kernel Density Estimation
    Kim, JooSeuk
    Scott, Clayton D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2529 - 2565
  • [34] Filtered kernel density estimation
    Marchette, David
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (01): : 106 - 109
  • [35] Isolation Kernel Density Estimation
    Ting, Kai Ming
    Washio, Takashi
    Wells, Jonathan R.
    Zhang, Hang
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 619 - 628
  • [36] Adaptive kernel density estimation
    Van Kerm, Philippe
    STATA JOURNAL, 2003, 3 (02): : 148 - 156
  • [37] Kernel adjusted density estimation
    Srihera, Ramidha
    Stute, Winfried
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (05) : 571 - 579
  • [38] Contingent Kernel Density Estimation
    Fortmann-Roe, Scott
    Starfield, Richard
    Getz, Wayne M.
    PLOS ONE, 2012, 7 (02):
  • [39] Variable kernel density estimation
    Hazelton, ML
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) : 271 - 284
  • [40] Filtered kernel density estimation
    Marchette, DJ
    Priebe, CE
    Rogers, GW
    Solka, JL
    COMPUTATIONAL STATISTICS, 1996, 11 (02) : 95 - 112