Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks

被引:14
|
作者
Rajabi, Mohammad Mahdi [1 ]
Komeilian, Pooya [2 ]
Wan, Xi [3 ]
Farmani, Raziyeh [3 ]
机构
[1] Tarbiat Modares Univ, Civil & Environm Engn Fac, POB 14115-397, Tehran, Iran
[2] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
[3] Univ Exeter, Ctr Water Syst, Dept Engn, Exeter EX4 4QF, Devon, England
关键词
Leak; Anomaly detection; Generative adversarial networks; Image-to-image translation; Structural similarity index; Water Distribution; DISTRIBUTION-SYSTEMS; ANOMALY DETECTION; BURST DETECTION; ALGORITHM;
D O I
10.1016/j.watres.2023.120012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper explores the use of 'conditional convolutional generative adversarial networks' (CDCGAN) for image -based leak detection and localization (LD&L) in water distribution networks (WDNs). The method employs pressure measurements and is based on four pillars: (1) hydraulic model-based generation of leak-free training data by taking into account the demand uncertainty, (2) conversion of hydraulic model input demand-output pressure pairs into images using kriging interpolation, (3) training of a CDCGAN model for image-to-image translation, and (4) using the structural similarity (SSIM) index for LD&L. SSIM, computed over the entire pressure distribution image is used for leak detection, and a local estimate of SSIM is employed for leak local-ization. The CDCGAN model employed in this paper is based on the pix2pix architecture. The effectiveness of the proposed methodology is demonstrated on leakage datasets under various scenarios. Results show that the method has an accuracy of approximately 70% for real-time leak detection. The proposed method is well-suited for real-time applications due to the low computational cost of CDCGAN predictions compared to WDN hydraulic models, is robust in presence of uncertainty due to the nature of generative adversarial networks, and scales well to large and variable-sized monitoring data due to the use of an image-based approach.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] Advanced acoustic leak detection in water distribution networks using integrated generative model
    Liu, Rongsheng
    Zayed, Tarek
    Xiao, Rui
    Water Research, 2024, 254
  • [32] Advanced acoustic leak detection in water distribution networks using integrated generative model
    Liu, Rongsheng
    Zayed, Tarek
    Xiao, Rui
    WATER RESEARCH, 2024, 254
  • [33] BScGAN: DEEP BACKGROUND SUBTRACTION WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
    Bakkay, M. C.
    Rashwan, H. A.
    Salmane, H.
    Khoudour, L.
    Puig, D.
    Ruichek, Y.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 4018 - 4022
  • [34] Insufficient Data Generative Model for Pipeline Network Leak Detection Using Generative Adversarial Networks
    Zhang, Huaguang
    Hu, Xuguang
    Ma, Dazhong
    Wang, Rui
    Xie, Xiangpeng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 7107 - 7120
  • [35] A protection scheme based on conditional generative adversarial network and convolutional classifier for high impedance fault detection in distribution networks
    Mohammadi, Amin
    Jannati, Mohsen
    Shams, Mohammadreza
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
  • [36] Font Creation Using Class Discriminative Deep Convolutional Generative Adversarial Networks
    Abe, Kotaro
    Iwana, Brian Kenji
    Holmer, Viktor Gosta
    Uchida, Seiichi
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 232 - 237
  • [37] Leak detection and localization in water distribution networks: Review and perspective
    Romero-Ben, Luis
    Alves, Debora
    Blesa, Joaquim
    Cembrano, Gabriela
    Puig, Vicenc
    Duviella, Eric
    ANNUAL REVIEWS IN CONTROL, 2023, 55 : 392 - 419
  • [38] Evolving Levels for General Games Using Deep Convolutional Generative Adversarial Networks
    Irfan, Ayesha
    Zafar, Adeel
    Hassan, Shahbaz
    2019 11TH COMPUTER SCIENCE AND ELECTRONIC ENGINEERING (CEEC), 2019, : 96 - 101
  • [39] Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks
    Fujioka, Tomoyuki
    Mori, Mio
    Kubota, Kazunori
    Kikuchi, Yuka
    Katsuta, Leona
    Adachi, Mio
    Oda, Goshi
    Nakagawa, Tsuyoshi
    Kitazume, Yoshio
    Tateishi, Ukihide
    DIAGNOSTICS, 2019, 9 (04)
  • [40] ExoGAN: Retrieving Exoplanetary Atmospheres Using Deep Convolutional Generative Adversarial Networks
    Zingales, Tiziano
    Waldmann, Ingo P.
    ASTRONOMICAL JOURNAL, 2018, 156 (06):