Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks

被引:14
|
作者
Rajabi, Mohammad Mahdi [1 ]
Komeilian, Pooya [2 ]
Wan, Xi [3 ]
Farmani, Raziyeh [3 ]
机构
[1] Tarbiat Modares Univ, Civil & Environm Engn Fac, POB 14115-397, Tehran, Iran
[2] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
[3] Univ Exeter, Ctr Water Syst, Dept Engn, Exeter EX4 4QF, Devon, England
关键词
Leak; Anomaly detection; Generative adversarial networks; Image-to-image translation; Structural similarity index; Water Distribution; DISTRIBUTION-SYSTEMS; ANOMALY DETECTION; BURST DETECTION; ALGORITHM;
D O I
10.1016/j.watres.2023.120012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper explores the use of 'conditional convolutional generative adversarial networks' (CDCGAN) for image -based leak detection and localization (LD&L) in water distribution networks (WDNs). The method employs pressure measurements and is based on four pillars: (1) hydraulic model-based generation of leak-free training data by taking into account the demand uncertainty, (2) conversion of hydraulic model input demand-output pressure pairs into images using kriging interpolation, (3) training of a CDCGAN model for image-to-image translation, and (4) using the structural similarity (SSIM) index for LD&L. SSIM, computed over the entire pressure distribution image is used for leak detection, and a local estimate of SSIM is employed for leak local-ization. The CDCGAN model employed in this paper is based on the pix2pix architecture. The effectiveness of the proposed methodology is demonstrated on leakage datasets under various scenarios. Results show that the method has an accuracy of approximately 70% for real-time leak detection. The proposed method is well-suited for real-time applications due to the low computational cost of CDCGAN predictions compared to WDN hydraulic models, is robust in presence of uncertainty due to the nature of generative adversarial networks, and scales well to large and variable-sized monitoring data due to the use of an image-based approach.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [21] Splenomegaly Segmentation using Global Convolutional Kernels and Conditional Generative Adversarial Networks
    Huo, Yuankai
    Xu, Zhoubing
    Bao, Shunxing
    Bermudez, Camilo
    Plassard, Andrew J.
    Liu, Jiaqi
    Yao, Yuang
    Assad, Albert
    Abramson, Richard G.
    Landman, Bennett A.
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [22] Metamodeling of a deep drawing process using conditional Generative Adversarial Networks
    Link, Patrick
    Bodenstab, Johannes
    Penter, Lars
    Ihlenfeldt, Steffen
    INTERNATIONAL DEEP-DRAWING RESEARCH GROUP CONFERENCE (IDDRG 2022), 2022, 1238
  • [23] Improving Face Liveness Detection Robustness with Deep Convolutional Generative Adversarial Networks
    Padnevych, Ruslan
    Semedo, David
    Carmo, David
    Magalhaes, Joao
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1866 - 1870
  • [24] Anomaly Detection of Railway Catenary Based on Deep Convolutional Generative Adversarial Networks
    Yang, Pei
    Jin, Weidong
    Tang, Peng
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1366 - 1370
  • [25] DeepCGAN: early Alzheimer's detection with deep convolutional generative adversarial networks
    Ali, Imad
    Saleem, Nasir
    Alhussein, Musaed
    Zohra, Benazeer
    Aurangzeb, Khursheed
    Haq, Qazi Mazhar ul
    FRONTIERS IN MEDICINE, 2024, 11
  • [26] Anomaly detection of adversarial examples using class-conditional generative adversarial networks
    Wang, Hang
    Miller, David J.
    Kesidis, George
    COMPUTERS & SECURITY, 2023, 124
  • [27] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Xukang Luo
    Ying Jiang
    Enqiang Wang
    Xinlei Men
    EURASIP Journal on Advances in Signal Processing, 2022
  • [28] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Luo, Xukang
    Jiang, Ying
    Wang, Enqiang
    Men, Xinlei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [29] Malware Detection Using Deep Transferred Generative Adversarial Networks
    Kim, Jin-Young
    Bu, Seok-Jun
    Cho, Sung-Bae
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 556 - 564
  • [30] Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks
    Zhang, Pengfei
    Ju, Xiaoming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021