MASI enables fast model-free standardization and integration of single-cell transcriptomics data

被引:1
|
作者
Xu, Yang [1 ,4 ]
Kramann, Rafael [2 ]
McCord, Rachel Patton [3 ]
Hayat, Sikander [2 ]
机构
[1] Univ Tennessee, UT ORNL Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA
[2] Rhein Westfal TH Aachen, Inst Expt Med & Syst Biol, Aachen, Germany
[3] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA
[4] Broad Inst & Harvard, Data Sci Platform, Cambridge, MA 02142 USA
关键词
EXPRESSION; ATLAS; LANDSCAPE; IDENTITY; REVEALS;
D O I
10.1038/s42003-023-04820-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
MASI is a computational pipeline that enables the integration and annotation of large single-cell transcriptomic datasets with limited computational resources. Single-cell transcriptomics datasets from the same anatomical sites generated by different research labs are becoming increasingly common. However, fast and computationally inexpensive tools for standardization of cell-type annotation and data integration are still needed in order to increase research inclusivity. To standardize cell-type annotation and integrate single-cell transcriptomics datasets, we have built a fast model-free integration method, named MASI (Marker-Assisted Standardization and Integration). We benchmark MASI with other well-established methods and demonstrate that MASI outperforms other methods, in terms of integration, annotation, and speed. To harness knowledge from single-cell atlases, we demonstrate three case studies that cover integration across biological conditions, surveyed participants, and research groups, respectively. Finally, we show MASI can annotate approximately one million cells on a personal laptop, making large-scale single-cell data integration more accessible. We envision that MASI can serve as a cheap computational alternative for the single-cell research community.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] ScType enables fast and accurate cell type identification from spatial transcriptomics data
    Nader, Kristen
    Tasci, Misra
    Ianevski, Aleksandr
    Erickson, Andrew
    Verschuren, Emmy W.
    Aittokallio, Tero
    Miihkinen, Mitro
    BIOINFORMATICS, 2024, 40 (07)
  • [42] A hitchhiker's guide to single-cell transcriptomics and data analysis pipelines
    Nayak, Richa
    Hasija, Yasha
    GENOMICS, 2021, 113 (02) : 606 - 619
  • [43] Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis
    Adil, Asif
    Kumar, Vijay
    Jan, Arif Tasleem
    Asger, Mohammed
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [44] Inferring single-cell and spatial microRNA activity from transcriptomics data
    Herbst, Efrat
    Mandel-Gutfreund, Yael
    Yakhini, Zohar
    Biran, Hadas
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [45] Deep learning applications in single-cell genomics and transcriptomics data analysis
    Erfanian, Nafiseh
    Heydari, A. Ali
    Feriz, Adib Miraki
    Ianez, Pablo
    Derakhshani, Afshin
    Ghasemigol, Mohammad
    Farahpour, Mohsen
    Razavi, Seyyed Mohammad
    Nasseri, Saeed
    Safarpour, Hossein
    Sahebkar, Amirhossein
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 165
  • [46] OmniClust: A versatile clustering toolkit for single-cell and spatial transcriptomics data
    Cui, Yaxuan
    Cui, Yang
    Ding, Yi
    Nakai, Kenta
    Wei, Leyi
    Le, Yuyin
    Ye, Xiucai
    Sakurai, Tetsuya
    METHODS, 2025, 238 : 84 - 94
  • [47] Big data analytics in single-cell transcriptomics: Five grand opportunities
    Bhattacharya, Namrata
    Nelson, Colleen C.
    Ahuja, Gaurav
    Sengupta, Debarka
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (04)
  • [48] Quantitative comparison of cellular trajectories from single-cell transcriptomics data
    Steinheuer, Lisa Maria
    Thurley, Kevin
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 187 - 187
  • [49] Integration of single-cell transcriptomics and bulk transcriptomics to explore prognostic and immunotherapeutic characteristics of nucleotide metabolism in lung adenocarcinoma
    Zhang, Kai
    Wang, Luyao
    Chen, Huili
    Deng, Lili
    Hu, Mengling
    Wang, Ziqiang
    Xie, Yiluo
    Lian, Chaoqun
    Wang, Xiaojing
    Zhang, Jing
    FRONTIERS IN GENETICS, 2025, 15
  • [50] The Single-cell Pediatric Cancer Atlas: Open-source data and tools for single-cell transcriptomics of pediatric tumors
    Hawkins, Allegra G.
    Shapiro, Joshua A.
    Spielman, Stephanie J.
    Mejia, David S.
    Prasad, Deepashree Venkatesh
    Ichihara, Nozomi
    Yakovets, Arkadii
    Wheeler, Kurt G.
    Bethell, Chante J.
    Foltz, Steven M.
    O'Malley, Jennifer
    Greene, Casey S.
    Taroni, Jaclyn N.
    CANCER RESEARCH, 2024, 84 (06)