MASI enables fast model-free standardization and integration of single-cell transcriptomics data

被引:1
|
作者
Xu, Yang [1 ,4 ]
Kramann, Rafael [2 ]
McCord, Rachel Patton [3 ]
Hayat, Sikander [2 ]
机构
[1] Univ Tennessee, UT ORNL Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA
[2] Rhein Westfal TH Aachen, Inst Expt Med & Syst Biol, Aachen, Germany
[3] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA
[4] Broad Inst & Harvard, Data Sci Platform, Cambridge, MA 02142 USA
关键词
EXPRESSION; ATLAS; LANDSCAPE; IDENTITY; REVEALS;
D O I
10.1038/s42003-023-04820-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
MASI is a computational pipeline that enables the integration and annotation of large single-cell transcriptomic datasets with limited computational resources. Single-cell transcriptomics datasets from the same anatomical sites generated by different research labs are becoming increasingly common. However, fast and computationally inexpensive tools for standardization of cell-type annotation and data integration are still needed in order to increase research inclusivity. To standardize cell-type annotation and integrate single-cell transcriptomics datasets, we have built a fast model-free integration method, named MASI (Marker-Assisted Standardization and Integration). We benchmark MASI with other well-established methods and demonstrate that MASI outperforms other methods, in terms of integration, annotation, and speed. To harness knowledge from single-cell atlases, we demonstrate three case studies that cover integration across biological conditions, surveyed participants, and research groups, respectively. Finally, we show MASI can annotate approximately one million cells on a personal laptop, making large-scale single-cell data integration more accessible. We envision that MASI can serve as a cheap computational alternative for the single-cell research community.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : i394 - i403
  • [32] Database for reprocessed public single-cell transcriptomics data (SCPortalen)
    Abugessaisa, Imad
    Noguchi, Shuhei
    Bottcher, Michael
    Hasegawa, Akira
    Kouno, Tsukasa
    Kato, Sachi
    Tada, Yuhki
    Ura, Hiroki
    Abe, Kuniya
    Shin, Jay W.
    Plessy, Charles
    Carninci, Piero
    Kasukawa, Takeya
    HUMAN GENOMICS, 2018, 12
  • [33] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : I394 - I403
  • [34] Automation enables high-throughput and reproducible single-cell transcriptomics library preparation
    Kind, David
    Baskaran, Praveen
    Ramirez, Fidel
    Giner, Martin
    Hayes, Michael
    Santacruz, Diana
    Koss, Carolin K.
    el Kasmi, Karim C.
    Wijayawardena, Bhagya
    Viollet, Coralie
    SLAS TECHNOLOGY, 2022, 27 (02): : 135 - 142
  • [35] A review on integration methods for single-cell data
    Pan D.
    Li H.
    Liu H.
    Sun X.
    1600, West China Hospital, Sichuan Institute of Biomedical Engineering (38): : 1010 - 1017
  • [36] Benchmark of Data Integration in Single-Cell Proteomics
    Gong, Yaguo
    Dai, Yangbo
    Wu, Qibiao
    Guo, Li
    Yao, Xiaojun
    Yang, Qingxia
    ANALYTICAL CHEMISTRY, 2025, 97 (02) : 1254 - 1263
  • [37] INTEGRATION OF GENETIC AND CLINICAL DATA, WITH SINGLE-CELL TRANSCRIPTOMICS OF ATHEROSCLEROTIC PLAQUES IDENTIFIES NOVEL SMOOTH MUSCLE CELL GENES
    Narayanan, S.
    Vuckovic, S.
    Bergman, O.
    Wirka, R.
    Lengquist, M.
    Quertermous, T.
    Hedin, U.
    Matic, L.
    ATHEROSCLEROSIS, 2023, 379
  • [38] Large-scale foundation model on single-cell transcriptomics
    Hao, Minsheng
    Gong, Jing
    Zeng, Xin
    Liu, Chiming
    Guo, Yucheng
    Cheng, Xingyi
    Wang, Taifeng
    Ma, Jianzhu
    Zhang, Xuegong
    Song, Le
    NATURE METHODS, 2024, 21 (08) : 1481 - 1491
  • [39] Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics
    Gonzalez-Blas, Carmen Bravo
    Quan, Xiao-Jiang
    Duran-Romana, Ramon
    Taskiran, Ibrahim Ihsan
    Koldere, Duygu
    Davie, Kristofer
    Christiaens, Valerie
    Makhzami, Samira
    Hulselmans, Gert
    de Waegeneer, Maxime
    Mauduit, David
    Poovathingal, Suresh
    Aibar, Sara
    Aerts, Stein
    MOLECULAR SYSTEMS BIOLOGY, 2020, 16 (05)
  • [40] BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data
    Yan, Yinqiao
    Luo, Xiangyu
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)