Peer-to-Peer Energy Trading Under Network Constraints Based on Generalized Fast Dual Ascent

被引:35
|
作者
Feng, Changsen [1 ]
Liang, Bomiao [2 ]
Li, Zhengmao [3 ]
Liu, Weijia [4 ]
Wen, Fushuan [5 ,6 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Automat & Elect Engn, Hangzhou 310023, Peoples R China
[3] Nanyang Technol Univ, Shool Elect & Elect Engn, Singapore 639798, Singapore
[4] Natl Renewable Energy Lab, Power Syst Engn Ctr, Golden, CO 80401 USA
[5] Zhejiang Univ, Hainan Inst, Sanya 572000, Peoples R China
[6] Zhejiang Univ, Sch Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Distribution networks; Peer-to-peer computing; Costs; Privacy; Games; Convergence; Resource management; Peer-to-peer (P2P) energy trading; event-driven; market clearing; generalized fast dual ascent; OPTIMIZATION; FRAMEWORK; MARKET;
D O I
10.1109/TSG.2022.3162876
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The wide deployment of renewable energy resources, combined with a more proactive demand-side management, is inducing a new paradigm in both power system operation and electricity market trading, which especially boosts the emergence of the peer-to-peer (P2P) market. A more flexible local market mechanism is highly desirable in response to fast changes in renewable power generation at the distribution network level. Moreover, large-scale implementation of P2P energy trading inevitably affects the secure and economic operation of the distribution network. This paper presents a new P2P electricity trading framework with distribution network security constraints considered using the generalized fast dual ascent method. First, an event-driven local P2P market framework is presented to facilitate short-term or immediate local energy transactions. Then, the sensitivity analysis of nodal voltage and network loss with respect to nodal power injections is used to evaluate the impacts of P2P transactions on the distribution network, which ensures the secure operation of the distribution system. Thereby, the external operational constraints are internalized, and the cost of P2P energy trading can be appropriately allocated in an endogenous way. Moreover, a generalized fast dual ascent method is employed to implement distributed market-clearing efficiently. Finally, numerical results indicate that the proposed model could guarantee secure operation of the distribution system with P2P energy trading, and the solution method enjoys good convergence performance.
引用
下载
收藏
页码:1441 / 1453
页数:13
相关论文
共 50 条
  • [41] Peer-to-peer energy trading among smart homes
    Alam, Muhammad Raisul
    St-Hilaire, Marc
    Kunz, Thomas
    APPLIED ENERGY, 2019, 238 : 1434 - 1443
  • [42] Bilateral Contract Networks for Peer-to-Peer Energy Trading
    Morstyn, Thomas
    Teytelboym, Alexander
    McCulloch, Malcolm D.
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (02) : 2026 - 2035
  • [43] Peer-to-peer energy trading using blockchain technology
    Sitharthan, R.
    Padmanaban, Sanjeevikumar
    Dhanabalan, Shanmuga Sundar
    Rajesh, M.
    ENERGY REPORTS, 2022, 8 : 2348 - 2350
  • [44] Review of Existing Peer-to-Peer Energy Trading Projects
    Zhang, Chenghua
    Wu, Jianzhong
    Long, Chao
    Cheng, Meng
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2563 - 2568
  • [45] Distributed Ledger Technologies for Peer-to-Peer Energy Trading
    Jogunola, Olamide
    Hammoudeh, Mohammad
    Anoh, Kelvin
    Adebisi, Bamidele
    2020 IEEE ELECTRIC POWER AND ENERGY CONFERENCE (EPEC), 2020,
  • [46] Peer-to-Peer Energy Trading in Smart Energy Communities: A Lyapunov-Based Energy Control and Trading System
    Zhu, Hailing
    Ouahada, Khmaies
    Abu-Mahfouz, Adnan M.
    IEEE ACCESS, 2022, 10 : 42916 - 42932
  • [47] A Case Study of Renewable Energy Trading in a Peer-to-Peer Microgrid Based Network using Blockchain Technology
    Ghosh, Mousam
    Ghosh, Swarnankur
    Halder, Sukanta
    Mishra, Pratikanta
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [48] Generalized Nash Equilibrium Analysis for Peer-to-Peer Transactive Energy Market Considering Coupling Distribution Network Constraints
    Xia, Yuanxing
    Xu, Qingshan
    Ding, Yixing
    Shi, Linjun
    Wu, Feng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (06) : 8125 - 8137
  • [49] A BLOCKCHAIN-BASED PEER-TO-PEER ENERGY TRADING PLATFORM FOR DISTRIBUTED ENERGY RESOURCES
    Edmund, Enyinnia Chiemeziem
    Omitola, Olusegun
    Dada, Joseph Olufemi
    2022 IEEE NIGERIA 4TH INTERNATIONAL CONFERENCE ON DISRUPTIVE TECHNOLOGIES FOR SUSTAINABLE DEVELOPMENT (IEEE NIGERCON), 2022, : 302 - 306
  • [50] Distributed optimization for network-constrained peer-to-peer energy trading among multiple microgrids under uncertainty
    Wang, Luhao
    Wang, Zhuo
    Li, Zhengmao
    Yang, Ming
    Cheng, Xingong
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149