Peer-to-Peer Energy Trading Under Network Constraints Based on Generalized Fast Dual Ascent

被引:35
|
作者
Feng, Changsen [1 ]
Liang, Bomiao [2 ]
Li, Zhengmao [3 ]
Liu, Weijia [4 ]
Wen, Fushuan [5 ,6 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Automat & Elect Engn, Hangzhou 310023, Peoples R China
[3] Nanyang Technol Univ, Shool Elect & Elect Engn, Singapore 639798, Singapore
[4] Natl Renewable Energy Lab, Power Syst Engn Ctr, Golden, CO 80401 USA
[5] Zhejiang Univ, Hainan Inst, Sanya 572000, Peoples R China
[6] Zhejiang Univ, Sch Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Distribution networks; Peer-to-peer computing; Costs; Privacy; Games; Convergence; Resource management; Peer-to-peer (P2P) energy trading; event-driven; market clearing; generalized fast dual ascent; OPTIMIZATION; FRAMEWORK; MARKET;
D O I
10.1109/TSG.2022.3162876
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The wide deployment of renewable energy resources, combined with a more proactive demand-side management, is inducing a new paradigm in both power system operation and electricity market trading, which especially boosts the emergence of the peer-to-peer (P2P) market. A more flexible local market mechanism is highly desirable in response to fast changes in renewable power generation at the distribution network level. Moreover, large-scale implementation of P2P energy trading inevitably affects the secure and economic operation of the distribution network. This paper presents a new P2P electricity trading framework with distribution network security constraints considered using the generalized fast dual ascent method. First, an event-driven local P2P market framework is presented to facilitate short-term or immediate local energy transactions. Then, the sensitivity analysis of nodal voltage and network loss with respect to nodal power injections is used to evaluate the impacts of P2P transactions on the distribution network, which ensures the secure operation of the distribution system. Thereby, the external operational constraints are internalized, and the cost of P2P energy trading can be appropriately allocated in an endogenous way. Moreover, a generalized fast dual ascent method is employed to implement distributed market-clearing efficiently. Finally, numerical results indicate that the proposed model could guarantee secure operation of the distribution system with P2P energy trading, and the solution method enjoys good convergence performance.
引用
下载
收藏
页码:1441 / 1453
页数:13
相关论文
共 50 条
  • [21] Peer-to-Peer Energy Trading in Smart Grids Considering Network Utilization Fees
    Paudel, Amrit
    Jiawei, Yang
    Gooi, Hoay Beng
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [22] Poster: Peer-to-Peer Energy Trading for Local Area Packetized Power Network
    Zhang, Haobo
    Zhang, Hongliang
    Song, Lingyang
    PROCEEDINGS OF THE 2019 THE TWENTIETH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '19), 2019, : 381 - 382
  • [23] Peer-to-Peer Trading for Energy-Saving Based on Reinforcement Learning
    Pu, Liangyi
    Wang, Song
    Huang, Xiaodong
    Liu, Xing
    Shi, Yawei
    Wang, Huiwei
    ENERGIES, 2022, 15 (24)
  • [24] Peer-to-peer energy trading in energy local area network considering decentralized energy routing
    Jiang, Xingyue
    Sun, Chuan
    Cao, Lingling
    Liu, Junwei
    Ngai-Fong, Law
    Loo, K. H.
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 34
  • [25] Bilevel Peer-to-Peer Energy Trading to Maintain Network Quality and Benefit Distribution
    Noorfatima, Nadya
    Jung, Jaesung
    Onen, Ahmet
    Yoldas, Yeliz
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (08) : 1 - 5
  • [26] Network Usage Charge Framework for Peer-to-Peer Energy Trading in Distribution Systems
    Larbwisuthisaroj, Surapad
    Chaitusaney, Surachai
    IEEE ACCESS, 2024, 12 : 65228 - 65240
  • [27] Ethereum Blockchain-Based Peer-To-Peer Energy Trading Platform
    Iskakova, Aigerim
    Nunna, H. S. V. S. Kumar
    Siano, Pierluigi
    2020 IEEE INTERNATIONAL CONFERENCE ON POWER AND ENERGY (PECON 2020), 2020, : 327 - 331
  • [28] Peer-to-peer energy trading in a community based on deep reinforcement learning
    Wang, Yiqun
    Yang, Qingyu
    Li, Donghe
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2023, 15 (06)
  • [29] Peer-to-Peer Energy Trading With Energy Path Conflict Management in Energy Local Area Network
    Jiang, Xingyue
    Sun, Chuan
    Cao, Lingling
    Ngai-Fong, Law
    Loo, K. H.
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (03) : 2269 - 2278
  • [30] Potential for Peer-to-Peer Trading of Energy Based on the Home System of Practice
    Eon, Christine
    Liu, Xin
    Morrison, Gregory M.
    SUSTAINABILITY IN ENERGY AND BUILDINGS 2018, 2019, 131 : 478 - 486