The General Fractional Integrals and Derivatives on a Finite Interval

被引:17
|
作者
Al-Refai, Mohammed [1 ]
Luchko, Yuri [2 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid 21163, Jordan
[2] Berlin Univ Appl Sci & Technol, Dept Math Phys & Chem, D-13353 Berlin, Germany
关键词
Sonin kernels; Sonin condition; general fractional integral; general fractional derivative; fundamental theorems of fractional calculus; CALCULUS; OPERATORS; EQUATIONS;
D O I
10.3390/math11041031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general fractional integrals and derivatives considered so far in the Fractional Calculus literature have been defined for the functions on the real positive semi-axis. The main contribution of this paper is in introducing the general fractional integrals and derivatives of the functions on a finite interval. As in the case of the Riemann-Liouville fractional integrals and derivatives on a finite interval, we define both the left- and the right-sided operators and investigate their interconnections. The main results presented in the paper are the 1st and the 2nd fundamental theorems of Fractional Calculus formulated for the general fractional integrals and derivatives of the functions on a finite interval as well as the formulas for integration by parts that involve the general fractional integrals and derivatives.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications
    Liang, Jin
    Mu, Yunyi
    MATHEMATICS, 2019, 7 (06)
  • [42] General fractional variational problem depending on indefinite integrals
    Sayevand, K.
    Rostami, M. R.
    NUMERICAL ALGORITHMS, 2016, 72 (04) : 959 - 987
  • [43] Mellin transform for fractional integrals with general analytic kernel
    Rashid, Maliha
    Kalsoom, Amna
    Sager, Maria
    Inc, Mustafa
    Baleanu, Dumitru
    Alshomrani, Ali S.
    AIMS MATHEMATICS, 2022, 7 (05): : 9443 - 9462
  • [44] A fractional Gauss-Jacobi quadrature rule for approximating fractional integrals and derivatives
    Jahanshahi, S.
    Babolian, E.
    Torres, D. F. M.
    Vahidi, A. R.
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 295 - 304
  • [45] Hadamard-type fractional integrals and derivatives and differential equations of fractional order
    Kilbas, AA
    Marzan, SA
    Titioura, AA
    DOKLADY MATHEMATICS, 2003, 67 (02) : 263 - 267
  • [46] On quasi-periodicity properties of fractional integrals and fractional derivatives of periodic functions
    Area, I.
    Losada, J.
    Nieto, J. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (01) : 1 - 16
  • [47] ON A NEW CLASS OF HARDY-TYPE INEQUALITIES WITH FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES
    Iqbal, Sajid
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2014, 18 (519): : 91 - 106
  • [49] GENERAL FRACTIONAL DERIVATIVES AND THE BERGMAN PROJECTION
    Perala, Antti
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 903 - 913
  • [50] Fractional integrals over a function of finite type on the intersection spaces
    Nah, Jinyoung
    Rim, Kyung Soo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 1209 - 1218