First-principles prediction of moire ultra-flat bands in twisted bilayer nitrogene

被引:0
|
作者
Hu, Yingcheng [1 ]
Chen, Canhong [1 ]
Dong, Shengjie [2 ]
Yang, Lulu [2 ]
Mao, Zhuo [3 ]
Pan, Zhaoqi [1 ]
Xie, Wucheng [1 ]
Li, Jiesen [1 ,4 ]
机构
[1] Foshan Univ, Sch Environm & Chem Engn, Foshan, Peoples R China
[2] Guangdong Baiyun Univ, Fac Elect Informat Engn, Guangzhou, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Tianjin Key Lab Biomed Mat, Inst Biomed Engn, Key Lab Biomat & Nanotechnol Canc Immunotherapy, Tianjin, Peoples R China
[4] Guangzhou Ginpie Technol Co Ltd, Dept Res & Dev, Guangzhou, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Moire pattern; Twist angles; Flat band; Electron localization;
D O I
10.1016/j.ssc.2023.115422
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Based on first-principles density functional theory, we investigated the electronic structures of twisted bilayer nitrogene at various twist angles. This electron localization by the influence of the moir & eacute; superlattice with very small theta leads to flat bands, especially one of valence bands at the Fermi level on atoms in the AA zone whereas for a larger theta no strong localization occurs owning to a large proportion of the AB zone. Also, there is a linear relationship between the band gaps and the torsion angles of the twisted bilayer nitrogene. A smaller twist angle corresponds to a larger band gap, whereas a larger twist angle corresponds to a smaller band gap. This localization should also reduce considerably the mobility of the electrons and thus modify transport properties.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon*
    Ma, Ya-Bin
    Ouyang, Tao
    Chen, Yuan-Ping
    Xie, Yue-E
    CHINESE PHYSICS B, 2021, 30 (07)
  • [32] Flat-bands in translated and twisted bilayer Penrose quasicrystals
    Diaz-Reynoso, U. A.
    Huipe-Domratcheva, E.
    Navarro, O.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (39)
  • [33] Electrically Tunable Flat Bands and Magnetism in Twisted Bilayer Graphene
    Wolf, T. M. R.
    Lado, J. L.
    Blatter, G.
    Zilberberg, O.
    PHYSICAL REVIEW LETTERS, 2019, 123 (09)
  • [34] Enhanced confinement due to ultra-flat bands in photonic crystal waveguides
    Ibanescu, M
    Reed, E
    Joannopoulos, JD
    Photonic Crystal Materials and Devices III, 2005, 5733 : 152 - 158
  • [35] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
    马亚斌
    欧阳滔
    陈元平
    谢月娥
    ChinesePhysicsB, 2021, 30 (07) : 447 - 451
  • [36] Twisted Bilayer MXenes//MoS2 Moire Superlattices for Alkaline Metal-Ion Batteries: Insights from First-Principles Calculations
    Jiang, Qin
    Liu, Haoliang
    He, Huaxuan
    Li, Sateng
    Hou, Yuxuan
    Wu, Kai
    Cheng, Yonghong
    Xiao, Bing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (13): : 6109 - 6128
  • [37] A first-principles theoretical study of the electronic and optical properties of twisted bilayer GaN structures
    Cai, Xiang
    Deng, Shuo
    Li, Lijie
    Hao, Ling
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (03) : 910 - 916
  • [38] A first-principles theoretical study of the electronic and optical properties of twisted bilayer GaN structures
    Xiang Cai
    Shuo Deng
    Lijie Li
    Ling Hao
    Journal of Computational Electronics, 2020, 19 : 910 - 916
  • [39] Moire flat bands and antiferroelectric domains in lattice relaxed twisted bilayer hexagonal boron nitride under perpendicular electric fields
    Li, Fengping
    Lee, Dongkyu
    Leconte, Nicolas
    Javvaji, Srivani
    Kim, Young Duck
    Jung, Jeil
    PHYSICAL REVIEW B, 2024, 110 (15)
  • [40] Moire flat bands in twisted 2D hexagonal vdW materials
    Xu, Qiaoling
    Guo, Yuzheng
    Xian, Lede
    2D MATERIALS, 2022, 9 (01):