First-principles prediction of moire ultra-flat bands in twisted bilayer nitrogene

被引:0
|
作者
Hu, Yingcheng [1 ]
Chen, Canhong [1 ]
Dong, Shengjie [2 ]
Yang, Lulu [2 ]
Mao, Zhuo [3 ]
Pan, Zhaoqi [1 ]
Xie, Wucheng [1 ]
Li, Jiesen [1 ,4 ]
机构
[1] Foshan Univ, Sch Environm & Chem Engn, Foshan, Peoples R China
[2] Guangdong Baiyun Univ, Fac Elect Informat Engn, Guangzhou, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Tianjin Key Lab Biomed Mat, Inst Biomed Engn, Key Lab Biomat & Nanotechnol Canc Immunotherapy, Tianjin, Peoples R China
[4] Guangzhou Ginpie Technol Co Ltd, Dept Res & Dev, Guangzhou, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Moire pattern; Twist angles; Flat band; Electron localization;
D O I
10.1016/j.ssc.2023.115422
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Based on first-principles density functional theory, we investigated the electronic structures of twisted bilayer nitrogene at various twist angles. This electron localization by the influence of the moir & eacute; superlattice with very small theta leads to flat bands, especially one of valence bands at the Fermi level on atoms in the AA zone whereas for a larger theta no strong localization occurs owning to a large proportion of the AB zone. Also, there is a linear relationship between the band gaps and the torsion angles of the twisted bilayer nitrogene. A smaller twist angle corresponds to a larger band gap, whereas a larger twist angle corresponds to a smaller band gap. This localization should also reduce considerably the mobility of the electrons and thus modify transport properties.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Flat bands in twisted bilayer transition metal dichalcogenides
    Zhiming Zhang
    Yimeng Wang
    Kenji Watanabe
    Takashi Taniguchi
    Keiji Ueno
    Emanuel Tutuc
    Brian J. LeRoy
    Nature Physics, 2020, 16 : 1093 - 1096
  • [22] Nearly flat bands in twisted triple bilayer graphene
    Shin, Jiseon
    Chittari, Bheema Lingam
    Jang, Yunsu
    Min, Hongki
    Jung, Jeil
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [23] Flat bands in twisted bilayer transition metal dichalcogenides
    Zhang, Zhiming
    Wang, Yimeng
    Watanabe, Kenji
    Taniguchi, Takashi
    Ueno, Keiji
    Tutuc, Emanuel
    LeRoy, Brian J.
    NATURE PHYSICS, 2020, 16 (11) : 1093 - +
  • [24] Optically induced flat bands in twisted bilayer graphene
    Katz, Or
    Refael, Gil
    Lindner, Netanel H.
    PHYSICAL REVIEW B, 2020, 102 (15)
  • [25] A primer on twistronics: a massless Dirac fermion's journey to moire patterns and flat bands in twisted bilayer graphene
    Aggarwal, Deepanshu
    Narula, Rohit
    Ghosh, Sankalpa
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (14)
  • [26] Ultra-flat bands in two-dimensional photonic crystals
    Ibanescu, Mihai
    Soljacic, Marin
    Johnson, Steven G.
    Joannopoulos, J. D.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES IV, 2006, 6128
  • [27] Unconventional superconductivity in nearly flat bands in twisted bilayer graphene
    Roy, Bitan
    Juricic, Vladimir
    PHYSICAL REVIEW B, 2019, 99 (12)
  • [28] Emergence and Tuning of Multiple Flat Bands in Twisted Bilayer γ-Graphyne
    An, Jiao
    Kang, Jun
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (51): : 12283 - 12291
  • [29] Quasi-Flat Plasmonic Bands in Twisted Bilayer Graphene
    Stauber, Tobias
    Kohler, Heinerich
    NANO LETTERS, 2016, 16 (11) : 6844 - 6849
  • [30] Flat bands and electronic localization in twisted bilayer graphene nanoribbons
    Andrade, Elias
    Pantaleon, Pierre A.
    Guinea, Francisco
    Naumis, Gerardo G.
    PHYSICAL REVIEW B, 2023, 108 (23)