Synthesis of Ti2(InxAl1-x)C (x=0-1) solid solutions with high-purity and their properties

被引:9
|
作者
Tian, Zhihua [1 ]
Yan, Bingzhen [1 ]
Wu, Fushuo [1 ]
Tang, Jingwen [1 ]
Xu, Xueqin [1 ]
Liu, Jian [1 ,2 ]
Zhang, Peigen [1 ]
Sun, ZhengMing [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[2] Wuxi Lintex Adv Mat Co Ltd, Wuxi 214145, Peoples R China
基金
中国国家自然科学基金;
关键词
MAX phases; Ti2(InxAl1-x)C solid solution; Formation mechanism; Mechanical properties; Electrochemical corrosion; MAX PHASE; MECHANICAL-PROPERTIES; CORROSION-RESISTANCE; MICROSTRUCTURE; STABILITY;
D O I
10.1016/j.jeurceramsoc.2023.06.060
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, high-purity Ti2(InxAl1-x)C (x = 0-1) solid solutions were successfully synthesized. The crystal structure and actual composition of solid solutions were confirmed using XRD, SEM, and TEM analyses, and their formation mechanism was revealed by thermal analysis. On the In-rich side (x & GE; 0.5), primary Ti2InC first formed and then acted as a crystalline seed for the subsequent solid solutions, resulting in a cluster-like morphology. The lattice constants of Ti2(InxAl1-x)C were found to well follow Vegard's law. The examined properties of Ti2(InxAl1x)C also greatly depended on their A-site compositions. Ti2AlC exhibited the highest hardness and elastic moduli, while the best corrosion resistance was achieved at Ti2InC, and all Ti2(InxAl1-x)C displayed active dissolution in 0.5 M HCl solution. Thus, adjusting the In/Al ratio at A-site can yield a desired set of performances, which provides a good example for regulating the performance of MAX phases via A-site solid solution strategy.
引用
收藏
页码:5915 / 5924
页数:10
相关论文
共 50 条
  • [41] RESEARCH INTO ELECTROPHYSICAL PROPERTIES OF SOLID SOLUTIONS (CeSe)(x)(PbSe)(1-x) (x <= 0,02)
    Shafaqatova, G. G.
    Suleymanova, A. E.
    CHEMICAL PROBLEMS, 2016, (02): : 203 - 206
  • [42] Effect of Composition on Charge Transport in (TlGaSe2)1–x(TlGaS2)x (0 ≤ x ≤ 1) Solid Solutions
    S. M. Asadov
    S. N. Mustafaeva
    Inorganic Materials, 2024, 60 (11) : 1283 - 1292
  • [43] Synthesis and microstructure characterization of tetragonal Zr1–xTixO2 (x = 0–1) solid solutions
    Linggen Kong
    Inna Karatchevtseva
    Hanliang Zhu
    Meng Jun Qin
    Zaynab Aly
    Journal of Materials Science & Technology, 2019, 35 (09) : 1966 - 1976
  • [44] Optical properties of (Ge2)1−x(InP)x solid solutions
    Sh. K. Ismailov
    A. S. Saidov
    K. Durshimbetov
    B. Zhollybekov
    Technical Physics Letters, 2006, 32 : 538 - 541
  • [45] Formation and characterization of the solid solutions (CrxFe1-x)(2)O-3, 0<=x<=1
    Music, S
    Lenglet, M
    Popovic, S
    Hannoyer, B
    CzakoNagy, I
    Ristic, M
    Balzar, D
    Gashi, F
    JOURNAL OF MATERIALS SCIENCE, 1996, 31 (15) : 4067 - 4076
  • [46] Synthesis and magnetic properties of solid solutions In1-x Ga x SbaOE©Mn⟩
    Pashkova, O. N.
    Izotov, A. D.
    Lobanov, N. N.
    Sanygin, V. P.
    Filatov, A. V.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2017, 62 (01) : 99 - 102
  • [47] Synthesis and properties of Ca1-x TiSi1-x Fe2x O5 solid solutions
    Grigoryan, R. A.
    Grigoryan, L. A.
    INORGANIC MATERIALS, 2011, 47 (04) : 417 - 419
  • [48] Preparation and physical properties of the solid solutions Cu1+xMn1-xO2 (0 ≤ x ≤ 0.2)
    Trari, M
    Töpfer, J
    Dordor, P
    Grenier, JC
    Pouchard, M
    Doumerc, JP
    JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (09) : 2751 - 2758
  • [49] Electrical and Thermoelectrical Properties of TlIn1-xYbxTe2 (0 ≤ x ≤ 0.10) Solid Solutions
    Aliev, F. F.
    Yuzbashov, E. R.
    Agayeva, U. M.
    Zarbaliev, M.
    ACTA PHYSICA POLONICA A, 2016, 129 (01) : 69 - 74
  • [50] Structure and dielectric properties of solid solutions Bi7Ti4+x W x Ta1-2x O21 (x=0-0.5)
    Zubkov, S. V.
    Vlasenko, V. G.
    Shuvaeva, V. A.
    Shevtsova, S. I.
    PHYSICS OF THE SOLID STATE, 2016, 58 (01) : 42 - 49