Synthesis of Ti2(InxAl1-x)C (x=0-1) solid solutions with high-purity and their properties

被引:9
|
作者
Tian, Zhihua [1 ]
Yan, Bingzhen [1 ]
Wu, Fushuo [1 ]
Tang, Jingwen [1 ]
Xu, Xueqin [1 ]
Liu, Jian [1 ,2 ]
Zhang, Peigen [1 ]
Sun, ZhengMing [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[2] Wuxi Lintex Adv Mat Co Ltd, Wuxi 214145, Peoples R China
基金
中国国家自然科学基金;
关键词
MAX phases; Ti2(InxAl1-x)C solid solution; Formation mechanism; Mechanical properties; Electrochemical corrosion; MAX PHASE; MECHANICAL-PROPERTIES; CORROSION-RESISTANCE; MICROSTRUCTURE; STABILITY;
D O I
10.1016/j.jeurceramsoc.2023.06.060
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, high-purity Ti2(InxAl1-x)C (x = 0-1) solid solutions were successfully synthesized. The crystal structure and actual composition of solid solutions were confirmed using XRD, SEM, and TEM analyses, and their formation mechanism was revealed by thermal analysis. On the In-rich side (x & GE; 0.5), primary Ti2InC first formed and then acted as a crystalline seed for the subsequent solid solutions, resulting in a cluster-like morphology. The lattice constants of Ti2(InxAl1-x)C were found to well follow Vegard's law. The examined properties of Ti2(InxAl1x)C also greatly depended on their A-site compositions. Ti2AlC exhibited the highest hardness and elastic moduli, while the best corrosion resistance was achieved at Ti2InC, and all Ti2(InxAl1-x)C displayed active dissolution in 0.5 M HCl solution. Thus, adjusting the In/Al ratio at A-site can yield a desired set of performances, which provides a good example for regulating the performance of MAX phases via A-site solid solution strategy.
引用
收藏
页码:5915 / 5924
页数:10
相关论文
共 50 条
  • [31] Synthesis and properties of semiconductor solid solutions (InSb)(1-x)(CdTe)(x)
    Venger, E. F.
    Knorozok, L. M.
    Melnichuk, L. Yu.
    Melnichuk, O. V.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2006, 9 (02) : 80 - 86
  • [32] Growth and Electrical Transport Properties of (SnO2)x(In2O3)1-x (x=0-1) Films
    Rembeza, S. I.
    Voronov, P. E.
    Zainabidinov, S. Z.
    Rembeza, E. S.
    Kosheleva, N. N.
    Plotnikova, E. Yu.
    INORGANIC MATERIALS, 2020, 56 (03) : 277 - 285
  • [33] The AgxCu1−xInS2 solid solutions with 0≤x≤1
    I. V Bodnar
    L. V Yasyukevich
    B. V Korzoun
    A.G Karoza
    Journal of Materials Science, 1998, 33 : 183 - 188
  • [34] Synthesis, structure, and luminescence properties of Cd1–xMgxTe (0 < x < 0.20) solid solutions
    M. V. Gapanovich
    I. N. Odin
    M. V. Chukichev
    V. F. Kozlovskii
    G. F. Novikov
    Inorganic Materials, 2016, 52 : 53 - 56
  • [35] Synthesis, structure, and luminescence properties of Cd1-x Mg x Te (0 &lt; x &lt; 0.20) solid solutions
    Gapanovich, M. V.
    Odin, I. N.
    Chukichev, M. V.
    Kozlovskii, V. F.
    Novikov, G. F.
    INORGANIC MATERIALS, 2016, 52 (01) : 53 - 56
  • [36] Synthesis of Cr1-xMnxTe (0<=x<=1.O) solid solutions
    Makovetskii, GI
    Galyas, AI
    Severin, GM
    Yanushkevich, KI
    INORGANIC MATERIALS, 1996, 32 (08) : 846 - 849
  • [37] MAX phases Hf2(SexS1_ x)C (x=0-1) and their thermal expansion behaviors
    Wang, Xudong
    Chen, Ke
    Li, Ziqian
    Ding, Haoming
    Song, Yujie
    Du, Shiyu
    Chai, Zhifang
    Gu, Hui
    Huang, Qing
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (05) : 1874 - 1879
  • [38] Hydrothermal synthesis and properties of Ce1-xSmxO2-x/2 and Ce1-xCaxO2-x solid solutions
    Huang, W
    Shuk, P
    Greenblatt, M
    CHEMISTRY OF MATERIALS, 1997, 9 (10) : 2240 - 2245
  • [39] Transport properties of ceria-zirconia-yttria solid solutions {(CeO2)x(ZrO2)1-x}1-y(YO1.5)y (x=0-1, y=0.2, 0.35)
    Sakai, N
    Xiong, YP
    Yamaji, K
    Kishimoto, H
    Horita, T
    Brito, ME
    Yokokawa, H
    JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 408 : 503 - 506
  • [40] Thermodynamics and Crystallization Kinetics of Solid Solutions GaSxSe1- x (0 ≤ x ≤ 1)
    Asadov, S. M.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 96 (02) : 259 - 266