Bonding Performance of Glass Fiber-Reinforced Polymer Bars under the Influence of Deformation Characteristics

被引:1
|
作者
Xie, Fang [1 ]
Tian, Wanming [1 ]
Diez, Pedro [2 ]
Zlotnik, Sergio [2 ]
Gonzalez, Alberto Garcia [2 ]
机构
[1] Shaoxing Univ, Dept Civil Engn, Shaoxing 312000, Peoples R China
[2] Univ Politecn Catalunya Barcelona Tech, Dept Civil & Environm Engn, Barcelona 08034, Spain
关键词
GFRP bar; bond-slip behavior; deformation coefficient; engineering performance; four-fold model; MECHANICAL-PROPERTIES; AGGREGATE CONCRETE; FRP REBARS; GFRP BARS; BEHAVIOR; DURABILITY; SLIP; INTERFACE; STRENGTH;
D O I
10.3390/polym15122604
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Glass fiber-reinforced polymer (GFRP) of high performance, as a relatively ideal partial or complete substitute for steel, could increase the possibility of adapting structures to changes in harsh weather environments. While GFRP is combined with concrete in the form of bars, the mechanical characteristics of GFRP cause the bonding behavior to differ significantly from that of steel-reinforced members. In this paper, a central pull-out test was applied, according to ACI440.3R-04, to analyze the influence of the deformation characteristics of GFRP bars on bonding failure. The bond-slip curves of the GFRP bars with different deformation coefficients exhibited distinct four-stage processes. Increasing the deformation coefficient of the GFRP bars is able to significantly improve the bond strength between the GFRP bars and the concrete. However, while both the deformation coefficient and concrete strength of the GFRP bars were increased, the bond failure mode of the composite member was more likely to be changed from ductile to brittle. The results show members with larger deformation coefficients and moderate concrete grades, which generally have excellent mechanical and engineering properties. By comparing with the existing bond and slip constitutive models, it was found that the proposed curve prediction model was able to well match the engineering performance of GFRP bars with different deformation coefficients. Meanwhile, due to its high practicality, a four-fold model characterizing representative stress for the bond-slip behavior was recommended in order to predict the performance of the GFRP bars.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Contribution of longitudinal glass fiber-reinforced polymer bars in concrete cylinders under axial compression
    Fillmore, Brandon
    Sadeghian, Pedram
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2018, 45 (06) : 458 - 468
  • [22] Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment
    Benmokrane, B
    Wang, P
    Ton-That, TM
    Rahman, H
    Robert, JF
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2002, 6 (03) : 143 - 153
  • [23] Creep Rupture Performance of Basalt Fiber-Reinforced Polymer Bars
    Banibayat, Pouya
    Patnaik, Anil
    JOURNAL OF AEROSPACE ENGINEERING, 2015, 28 (03)
  • [24] Splitting of Concrete with Steel, Glass Fiber-Reinforced Polymer, and Basalt Fiber-Reinforced Polymer Bars Exposed to MgSO4
    Kim, Yail J.
    Chai, Yufei
    ACI STRUCTURAL JOURNAL, 2020, 117 (03) : 3 - 16
  • [25] Performance of Innovative Precast Concrete Sleepers Prestressed with Glass Fiber-Reinforced Polymer Reinforcing Bars
    Hadhood, Abdeldayem
    Mohamed, Hamdy M.
    Mwiseneza, Celestin
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2021, 118 (01) : 277 - 288
  • [26] Performance of Lightweight Self-Consolidating Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars without Stirrups under Shear
    Mehany, Shehab
    Mohamed, Hamdy M.
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2023, 120 (01) : 17 - 30
  • [27] Drift capacity design of shear walls reinforced with glass fiber-reinforced polymer bars
    University of Sherbrooke, Sherbrooke
    QC, Canada
    不详
    ACI Struct J, 6 (1397-1406):
  • [28] Drift Capacity Design of Shear Walls Reinforced with Glass Fiber-Reinforced Polymer Bars
    Mohamed, Nayera
    Farghaly, Ahmed Sabry
    Benmokrane, Brahim
    Neale, Kenneth W.
    ACI STRUCTURAL JOURNAL, 2014, 111 (06) : 1397 - 1406
  • [29] Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars
    Toutanji, HA
    Saafi, M
    ACI STRUCTURAL JOURNAL, 2000, 97 (05) : 712 - 719
  • [30] Shear Behavior of Geopolymer Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Maranan, G. B.
    Manalo, A. C.
    Benmokrane, B.
    Karunasena, W.
    Mendis, P.
    ACI STRUCTURAL JOURNAL, 2017, 114 (02) : 337 - 348