Smaller texture improves flexibility of crystalline silicon solar cells

被引:5
|
作者
Huang, Shenglei [1 ,2 ,3 ]
Xu, Changqing [4 ]
Wang, Guangyuan [1 ]
Zhang, Liping [1 ,3 ]
Meng, Fanying [1 ,3 ]
Zhao, Dongming [6 ]
Li, Rui [7 ]
Huang, Haiwei [7 ]
Liu, Zhengxin [1 ,2 ,3 ]
Liu, Wenzhu [1 ,3 ]
Du, Junlin [1 ]
Yu, Jian [5 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol SIMIT, Res Ctr New Energy Technol RCNET, Natl Key Lab Mat Integrated Circuits, Shanghai 200050, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci UCAS, Beijing 100049, Peoples R China
[4] Nanjing Normal Univ, Sch Phys & Technol, Jiangsu Key Lab Optoelect Technol, Nanjing 210023, Peoples R China
[5] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[6] Huaneng Clean Energy Res Inst, Beijing 102200, Peoples R China
[7] Huaneng Gansu Energy Dev Co Ltd, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar energy materials; Surfaces; Texture; HIGH-EFFICIENCY;
D O I
10.1016/j.matlet.2023.135768
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible solar cells are widely researched for their potential usage in photovoltaics integrated into buildings, cars, unmanned arial vehicle and wearable electronics. The thin crystalline silicon solar cell (60-90 mu m) is prone to crack due to surface texture when it is under bending. Here we investigated the effect of pyramid size on optical reflectivity and mechanical properties of silicon wafers. We find that smaller and uniform pyramids are beneficial for obtaining efficient and flexible silicon solar cells.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Progress in crystalline silicon heterojunction solar cells
    Liang, Bingquan
    Chen, Xinliang
    Wang, Xiaofeng
    Yuan, Heze
    Sun, Aixin
    Wang, Zheng
    Hu, Liyuan
    Hou, Guofu
    Zhao, Ying
    Zhang, Xiaodan
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (04) : 2441 - 2477
  • [32] Milestones in the development of crystalline silicon solar cells
    Treble, Fred
    Renewable energy, 1998, 15 (1 -4 pt 1): : 473 - 478
  • [33] Microchannel contacting of crystalline silicon solar cells
    James Bullock
    Hiroki Ota
    Hanchen Wang
    Zhaoran Xu
    Mark Hettick
    Di Yan
    Christian Samundsett
    Yimao Wan
    Stephanie Essig
    Monica Morales-Masis
    Andrés Cuevas
    Ali Javey
    Scientific Reports, 7
  • [34] Crystalline silicon solar cells with high efficiency
    Glunz, Stefan W. (stefan.glunz@ise.fraunhofer.de), 1600, Royal Society of Chemistry (2014-January):
  • [35] Substrates for thin crystalline silicon solar cells
    Blakers, AW
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 51 (3-4) : 385 - 392
  • [36] The industrial technology of crystalline silicon solar cells
    Lipinski, M
    Panek, P
    Ciach, R
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2003, 5 (05): : 1365 - 1371
  • [37] Polyaniline on crystalline silicon heterojunction solar cells
    Wang, Weining
    Schiff, E. A.
    APPLIED PHYSICS LETTERS, 2007, 91 (13)
  • [38] Raising the efficiency of crystalline silicon solar cells
    Muminov, R.A.
    Faziev, U.Kh.
    Tursunov, M.N.
    Abdiev, U.
    Applied Solar Energy (English translation of Geliotekhnika), 2005, 41 (03): : 15 - 21
  • [39] The Physics of Industrial Crystalline Silicon Solar Cells
    Breitenstein, Otwin
    ADVANCES IN PHOTOVOLTAICS, PT 2, 2013, 89 : 1 - 75
  • [40] Substrates for thin crystalline silicon solar cells
    Australian Natl Univ, Canberra, Australia
    Sol Energ Mater Sol Cells, 3-4 (385-392):