Smaller texture improves flexibility of crystalline silicon solar cells

被引:5
|
作者
Huang, Shenglei [1 ,2 ,3 ]
Xu, Changqing [4 ]
Wang, Guangyuan [1 ]
Zhang, Liping [1 ,3 ]
Meng, Fanying [1 ,3 ]
Zhao, Dongming [6 ]
Li, Rui [7 ]
Huang, Haiwei [7 ]
Liu, Zhengxin [1 ,2 ,3 ]
Liu, Wenzhu [1 ,3 ]
Du, Junlin [1 ]
Yu, Jian [5 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol SIMIT, Res Ctr New Energy Technol RCNET, Natl Key Lab Mat Integrated Circuits, Shanghai 200050, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci UCAS, Beijing 100049, Peoples R China
[4] Nanjing Normal Univ, Sch Phys & Technol, Jiangsu Key Lab Optoelect Technol, Nanjing 210023, Peoples R China
[5] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[6] Huaneng Clean Energy Res Inst, Beijing 102200, Peoples R China
[7] Huaneng Gansu Energy Dev Co Ltd, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar energy materials; Surfaces; Texture; HIGH-EFFICIENCY;
D O I
10.1016/j.matlet.2023.135768
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible solar cells are widely researched for their potential usage in photovoltaics integrated into buildings, cars, unmanned arial vehicle and wearable electronics. The thin crystalline silicon solar cell (60-90 mu m) is prone to crack due to surface texture when it is under bending. Here we investigated the effect of pyramid size on optical reflectivity and mechanical properties of silicon wafers. We find that smaller and uniform pyramids are beneficial for obtaining efficient and flexible silicon solar cells.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Amorphous silicon / crystalline silicon heterojunction solar cells
    Fahrner, Wolfgang Rainer (wolfgang.fahrner@fernuni-hagen.de), 2013, Springer Verlag
  • [22] Amorphous silicon/crystalline silicon heterojunctions for solar cells
    Kunst, M
    von Aichberger, S
    Citarella, G
    Wünsch, F
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 299 : 1198 - 1202
  • [23] Recombination in compensated crystalline silicon for solar cells
    Macdonald, Daniel
    Cuevas, Andres
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
  • [24] Corrosion behavior of crystalline silicon solar cells
    Xiong, Huaping
    Gan, Chuanhai
    Yang, Xiaobing
    Hu, Zhigang
    Niu, Haiyan
    Li, Jianfeng
    Si, Jianfang
    Xing, Pengfei
    Luo, Xuetao
    MICROELECTRONICS RELIABILITY, 2017, 70 : 49 - 58
  • [25] Metallization of crystalline silicon solar cells: A Review
    Ebong, Abasifreke
    Chen, Nian
    2012 9TH INTERNATIONAL CONFERENCE ON HIGH CAPACITY OPTICAL NETWORKS AND EMERGING/ENABLING TECHNOLOGIES (HONET), 2012, : 102 - 109
  • [26] Investigation of soldering for crystalline silicon solar cells
    Yang, Hong
    Wang, He
    Cao, Dingyue
    SOLDERING & SURFACE MOUNT TECHNOLOGY, 2016, 28 (04) : 222 - 226
  • [27] Passivating contacts for crystalline silicon solar cells
    Allen, Thomas G.
    Bullock, James
    Yang, Xinbo
    Javey, Ali
    De Wolf, Stefaan
    NATURE ENERGY, 2019, 4 (11) : 914 - 928
  • [28] Recent progress in crystalline silicon solar cells
    Tanaka, Makoto
    IEICE ELECTRONICS EXPRESS, 2013, 10 (16):
  • [29] Passivating contacts for crystalline silicon solar cells
    Thomas G. Allen
    James Bullock
    Xinbo Yang
    Ali Javey
    Stefaan De Wolf
    Nature Energy, 2019, 4 : 914 - 928
  • [30] The role of hydrogen for crystalline silicon solar cells
    Shao, Jianbo
    Xi, Xi
    Liu, Guilin
    Luo, Feng
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2023, 25 (5-6): : 228 - 240