Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov-Maxwell equations

被引:0
|
作者
Galindo-Olarte, Andres [1 ]
Huang, Juntao [2 ]
Ryan, Jennifer [3 ]
Cheng, Yingda [4 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 70409 USA
[3] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[4] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
Discontinuous Galerkin; Vlasov-Maxwell system; Superconvergence; Post-processing; SCHEME; INSTABILITY; INTEGRATION; PLASMA;
D O I
10.1007/s10543-023-00993-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov-Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of a post-processing technique to the DG solution in order to enhance its accuracy and resolution for the VM system. In particular, superconvergence in the negative-order norm for the probability distribution function and the electromagnetic fields is established for the DG solution. Numerical tests including Landau damping, two-stream instability, and streaming Weibel instabilities are considered showing the performance of the post-processor.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] Solving Vlasov-Maxwell Equations by Using Hamiltonian Splitting
    Li, Yingzhe
    He, Yang
    Sun, Yajuan
    Niesen, Jitse
    Qin, Hong
    Liu, Jian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [42] Solving the Vlasov-Maxwell equations using Hamiltonian splitting
    Li, Yingzhe
    He, Yang
    Sun, Yajuan
    Niesen, Jitse
    Qin, Hong
    Liu, Jian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 381 - 399
  • [43] Homogenization of the 1D Vlasov-Maxwell equations
    Bostan, M.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2008, 73 (03): : 539 - 555
  • [44] Generalized formulations of Maxwell's equations for numerical Vlasov-Maxwell simulations
    Barthelme, Regine
    Ciarlet, Patrick, Jr.
    Sonnendruecker, Eric
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05): : 657 - 680
  • [45] A spectral algorithm for solving the relativistic Vlasov-Maxwell equations
    Shebalin, JV
    COMPUTER PHYSICS COMMUNICATIONS, 2003, 156 (01) : 86 - 94
  • [46] Regularity of weak solutions for the relativistic Vlasov-Maxwell system
    Besse, Nicolas
    Bechouche, Philippe
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (04) : 693 - 719
  • [47] EXACT, TIME-DEPENDENT SOLUTIONS OF THE ONE-DIMENSIONAL VLASOV-MAXWELL EQUATIONS
    ABRAHAMSHRAUNER, B
    PHYSICS OF FLUIDS, 1984, 27 (01) : 197 - 202
  • [48] EXPLICIT STATIONARY SOLUTIONS OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    DEGOND, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (07): : 607 - 612
  • [50] Superconvergence of discontinuous Galerkin solutions for higher-order ordinary differential equations
    Temimi, H.
    APPLIED NUMERICAL MATHEMATICS, 2015, 88 : 46 - 65