Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov-Maxwell equations

被引:0
|
作者
Galindo-Olarte, Andres [1 ]
Huang, Juntao [2 ]
Ryan, Jennifer [3 ]
Cheng, Yingda [4 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 70409 USA
[3] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[4] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
Discontinuous Galerkin; Vlasov-Maxwell system; Superconvergence; Post-processing; SCHEME; INSTABILITY; INTEGRATION; PLASMA;
D O I
10.1007/s10543-023-00993-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov-Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of a post-processing technique to the DG solution in order to enhance its accuracy and resolution for the VM system. In particular, superconvergence in the negative-order norm for the probability distribution function and the electromagnetic fields is established for the DG solution. Numerical tests including Landau damping, two-stream instability, and streaming Weibel instabilities are considered showing the performance of the post-processor.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] A numerical scheme for the integration of the Vlasov-Maxwell system of equations
    Mangeney, A
    Califano, F
    Cavazzoni, C
    Travnicek, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 179 (02) : 495 - 538
  • [32] Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations
    Brizard, AJ
    PHYSICS OF PLASMAS, 2000, 7 (12) : 4816 - 4822
  • [33] Discontinuous Galerkin Methods for Relativistic Vlasov–Maxwell System
    He Yang
    Fengyan Li
    Journal of Scientific Computing, 2017, 73 : 1216 - 1248
  • [34] A new asymptotic approximate model for the Vlasov-Maxwell equations
    Assous, F.
    Tsipis, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 691 - 698
  • [35] High order moment closure for Vlasov-Maxwell equations
    Di, Yana
    Kou, Zhenzhong
    Li, Ruo
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (05) : 1087 - 1100
  • [36] Variational formulations of exact and reduced Vlasov-Maxwell equations
    Brizard, AJ
    Topics in Kinetic Theory, 2005, 46 : 151 - 170
  • [37] Lie symmetry approach for The Vlasov-Maxwell system of equations
    Rashidi, Saeede
    Hejazi, S. Reza
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 1 - 12
  • [38] Homogenization of the 1D Vlasov-Maxwell equations
    Bostan, M.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2008, 73 (03) : 539 - 555
  • [39] Quantized tensor networks for solving the Vlasov-Maxwell equations
    Ye, Erika
    Loureiro, Nuno F.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (03)
  • [40] High order moment closure for Vlasov-Maxwell equations
    Yana Di
    Zhenzhong Kou
    Ruo Li
    Frontiers of Mathematics in China, 2015, 10 : 1087 - 1100