The Numerical Solution of Nonlinear Fractional Lienard and Duffing Equations Using Orthogonal Perceptron

被引:0
|
作者
Verma, Akanksha [1 ]
Sumelka, Wojciech [2 ]
Yadav, Pramod Kumar [3 ]
机构
[1] Univ Delhi, Dyal Singh Coll, Dept Math, New Delhi 110003, India
[2] Poznan Univ Tech, Inst Struct Anal, Piotrowo 5 St, PL-60965 Poznan, Poland
[3] Motilal Nehru Natl Inst Technol Allahabad, Dept Math, Prayagraj 211004, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
orthogonal neural network; simulated annealing optimization technique; fractional differential equations; Caputo derivative; EXPLICIT EXACT-SOLUTIONS; DIFFERENTIAL-EQUATIONS; OPERATIONAL MATRIX;
D O I
10.3390/sym15091753
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper proposes an approximation algorithm based on the Legendre and Chebyshev artificial neural network to explore the approximate solution of fractional Lienard and Duffing equations with a Caputo fractional derivative. These equations show the oscillating circuit and generalize the spring-mass device equation. The proposed approach transforms the given nonlinear fractional differential equation (FDE) into an unconstrained minimization problem. The simulated annealing (SA) algorithm minimizes the mean square error. The proposed techniques examine various non-integer order problems to verify the theoretical results. The numerical results show that the proposed approach yields better results than existing methods.
引用
收藏
页数:19
相关论文
共 50 条