The Numerical Solution of Nonlinear Fractional Lienard and Duffing Equations Using Orthogonal Perceptron

被引:0
|
作者
Verma, Akanksha [1 ]
Sumelka, Wojciech [2 ]
Yadav, Pramod Kumar [3 ]
机构
[1] Univ Delhi, Dyal Singh Coll, Dept Math, New Delhi 110003, India
[2] Poznan Univ Tech, Inst Struct Anal, Piotrowo 5 St, PL-60965 Poznan, Poland
[3] Motilal Nehru Natl Inst Technol Allahabad, Dept Math, Prayagraj 211004, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
orthogonal neural network; simulated annealing optimization technique; fractional differential equations; Caputo derivative; EXPLICIT EXACT-SOLUTIONS; DIFFERENTIAL-EQUATIONS; OPERATIONAL MATRIX;
D O I
10.3390/sym15091753
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper proposes an approximation algorithm based on the Legendre and Chebyshev artificial neural network to explore the approximate solution of fractional Lienard and Duffing equations with a Caputo fractional derivative. These equations show the oscillating circuit and generalize the spring-mass device equation. The proposed approach transforms the given nonlinear fractional differential equation (FDE) into an unconstrained minimization problem. The simulated annealing (SA) algorithm minimizes the mean square error. The proposed techniques examine various non-integer order problems to verify the theoretical results. The numerical results show that the proposed approach yields better results than existing methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [2] Numerical Investigation of the Fractional-Order Lienard and Duffing Equations Arising in Oscillating Circuit Theory
    Singh, Harendra
    Srivastava, H. M.
    FRONTIERS IN PHYSICS, 2020, 8
  • [3] Numerical solution of strongly nonlinear full fractional duffing equation
    Pirmohabbati, P.
    Sheikhani, A. H. Refahi
    Najafi, H. Saberi
    Ziabari, A. Abdolahzadeh
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (08) : 1531 - 1551
  • [4] The numerical solution of fractional integral equations via orthogonal polynomials in fractional powers
    Department of Mathematics, Imperial College, London, United Kingdom
    arXiv,
  • [5] The numerical solution of fractional integral equations via orthogonal polynomials in fractional powers
    Tianyi Pu
    Marco Fasondini
    Advances in Computational Mathematics, 2023, 49
  • [6] The numerical solution of fractional integral equations via orthogonal polynomials in fractional powers
    Pu, Tianyi
    Fasondini, Marco
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (01)
  • [7] Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial Volterra integro-differential equations
    Mirzaee, Farshid
    Alipour, Sahar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 1870 - 1893
  • [8] Numerical solution of full fractional Duffing equations with Cubic-Quintic-Heptic nonlinearities
    Pirmohabbati, P.
    Sheikhani, A. H. Refahi
    Najafi, H. Saberi
    Ziabari, A. Abdolahzadeh
    AIMS MATHEMATICS, 2020, 5 (02): : 1621 - 1641
  • [9] An existence result with numerical solution of nonlinear fractional integral equations
    Kazemi, Manochehr
    Deep, Amar
    Nieto, Juan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10384 - 10399
  • [10] A COMPUTATIONAL ALGORITHM FOR THE NUMERICAL SOLUTION OF NONLINEAR FRACTIONAL INTEGRAL EQUATIONS
    Amin, Rohul
    Senu, Norazak
    Hafeez, Muhammad Bilal
    Arshad, Noreen Izza
    Ahmadian, Ali
    Salahshour, Soheil
    Sumelka, Wojciech
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)