Geometry and length control of 3D engineered heart tissues using direct laser writing

被引:1
|
作者
Karakan, M. Cagatay [1 ,2 ,3 ,4 ]
Ewoldt, Jourdan K. [3 ,4 ]
Segarra, Addianette J. [2 ,5 ]
Sundaram, Subramanian [3 ,4 ]
Wang, Miranda C. [3 ,4 ,6 ]
White, Alice E. [1 ,2 ,3 ,7 ,8 ]
Chen, Christopher S. [3 ,4 ]
Ekinci, Kamil L. [1 ,2 ,7 ]
机构
[1] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[4] Harvard Univ, Wyss Inst Biolog Inspired Engn, Boston, MA 02115 USA
[5] Polytech Univ Puerto Rico, Dept Biomed Engn, San Juan, PR 00918 USA
[6] Harvard MIT Hlth Sci & Technol, Inst Med Engn & Sci, MIT, Cambridge, MA 02139 USA
[7] Boston Univ, Div Mat Sci & Engn, Boston, MA 02215 USA
[8] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MUSCLE; CARDIOMYOCYTES; RECONSTITUTION; MICROTISSUES; MATURATION; MYOCARDIUM; MANIPULATE; PLATFORM; FORCE; MODEL;
D O I
10.1039/d3lc00752a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Geometry and mechanical characteristics of the environment surrounding the Engineered Heart Tissues (EHT) affect their structure and function. Here, we employed a 3D tissue culture platform fabricated using two-photon direct laser writing with a high degree of accuracy to control parameters that are relevant to EHT maturation. Using this platform, we first explore the effects of geometry based on two distinct shapes: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites that are placed symmetrically along hemicylindrical membranes. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length of the seeding wells for both configurations and observe a positive correlation between fiber alignment at the center of the EHTs and tissue length. With increasing length, an undesirable thinning and "necking" also emerge, leading to the failure of longer tissues over time. In the second step, we optimize the stiffness of the seeding wells and modify some of the attachment sites of the platform and the seeding parameters to achieve tissue stability for each length and geometry. Furthermore, we use the platform for electrical pacing and calcium imaging to evaluate the functional dynamics of EHTs as a function of frequency. Using two-photon direct laser writing, we developed a versatile platform to generate, scale, and study hiPSC-derived engineered heart tissues (EHTs) in various geometries, with the goal of promoting fiber alignment and maturation of the EHTs.
引用
收藏
页码:1685 / 1701
页数:17
相关论文
共 50 条
  • [1] 3D direct laser writing using a 405 nm diode laser
    Mueller, Patrick
    Thiel, Michael
    Wegener, Martin
    OPTICS LETTERS, 2014, 39 (24) : 6847 - 6850
  • [2] 3D conducting nanostructures fabricated using direct laser writing
    Terzaki, Konstantina
    Vasilantonakis, Nikos
    Gaidukeviciute, Arune
    Reinhardt, Carsten
    Fotakis, Costas
    Vamvakaki, Maria
    Farsari, Maria
    OPTICAL MATERIALS EXPRESS, 2011, 1 (04): : 586 - 597
  • [3] Direct writing of 3D microstructures using a scanning laser system
    Yu, H
    Gruntzig, A
    Zhao, Y
    Sharon, A
    Li, B
    Zhang, X
    MICRO- AND NANOSYSTEMS, 2004, 782 : 455 - 460
  • [4] 3D Biomedical Implants Fabricated using Direct Laser Writing
    Schizas, C.
    Melissinaki, V.
    Gaidukeviciute, A.
    Reinhardt, C.
    Ohrt, C.
    Dedoussis, V.
    Chichkov, B. N.
    Fotakis, C.
    Karalekas, D.
    Farsari, M.
    ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS III, 2010, 7591
  • [5] Polarization Control of 3D Polymerised Features in Femtosecond Direct Laser Writing
    Rekstyte, Sima
    Gailevicius, Darius
    Malinauskas, Mangirdas
    Juodkazis, Saulius
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [6] 3D photonic bandgap templating using holography and direct laser writing
    Wegener, M
    Deubel, M
    Enkrich, C
    Hermatschweiler, M
    Blanco, A
    Meisel, DC
    Linden, S
    von Freymann, G
    Pereira, S
    Busch, K
    Soukoulis, CM
    Kaso, A
    John, S
    Ozin, GA
    2005 CONFERENCE ON LASERS & ELECTRO-OPTICS (CLEO), VOLS 1-3, 2005, : 992 - 993
  • [7] Direct Laser Writing of 3D Nanostructures Using a 405nm Laser Diode
    Mueller, Patrick
    Thiel, Michael
    Wegener, Martin
    NANO-OPTICS: PRINCIPLES ENABLING BASIC RESEARCH AND APPLICATIONS, 2017, : 469 - 469
  • [8] Modeling Contractile Diseases Using Scalable 3D Engineered Heart Tissues For Drug Discovery
    Geisse, Nicholas
    Berry, Bonnie
    Gray, Kevin
    Kharoufeh, Samir
    Luttrell, Shawn M.
    Macadangdang, Jesse
    Worthen, Christal
    CIRCULATION RESEARCH, 2022, 131
  • [9] 3D direct laser writing of Petabyte Optical Disk
    Pavel, E.
    Jinga, S. I.
    Vasile, B. S.
    Dinescu, A.
    Trusca, R.
    Tosa, N.
    OPTICS AND LASER TECHNOLOGY, 2015, 71 : 45 - 49
  • [10] 3D laser direct writing for advanced photonic integration
    Psaila, Nicholas
    OPTICAL INTERCONNECTS XIX, 2019, 10924