Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae

被引:5
|
作者
Cheng, Li [1 ]
Zhao, Shijun [1 ,2 ]
Li, Tianyi [1 ,12 ]
Hou, Sha [1 ]
Luo, Zhouqing [1 ,3 ]
Xu, Jinsheng [4 ]
Yu, Wenfei [1 ,2 ]
Jiang, Shuangying [1 ]
Monti, Marco [5 ]
Schindler, Daniel [5 ]
Zhang, Weimin [6 ,7 ]
Hou, Chunhui [8 ]
Ma, Yingxin [1 ]
Cai, Yizhi [1 ,5 ]
Boeke, Jef D. [6 ,7 ,9 ]
Dai, Junbiao [1 ,2 ,10 ,11 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Shenzhen Inst Adv Technol, Key Lab Quantitat Synthet Biol,Shenzhen Key Lab Sy, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Xiamen Univ, Innovat Ctr Cell Signaling Network, Sch Life Sci, State Key Lab Cellular Stress Biol, Xiamen 361102, Fujian, Peoples R China
[4] Huazhong Agr Univ, Dept Bioinformat, Wuhan 430070, Hubei, Peoples R China
[5] Univ Manchester, Manchester Inst Biotechnol, Manchester M1 7DN, England
[6] NYU Langone Hlth, Inst Syst Genet, New York, NY USA
[7] NYU Langone Hlth, Dept Biochem & Mol Pharmacol, New York, NY USA
[8] Chinese Acad Sci, Kunming Inst Zool, China State Key Lab Genet Resources & Evolut, Kunming 650223, Peoples R China
[9] NYU Tandon Sch Engn, Dept Biomed Engn, Brooklyn, NY 11201 USA
[10] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen Branch, Minist Agr & Rural Affairs,Guangdong Lab Lingnan M, Shenzhen, Peoples R China
[11] Shenzhen Univ, Coll Life Sci & Oceanog, 1066 Xueyuan Rd, Shenzhen 518055, Guangdong, Peoples R China
[12] Shenzhen Lianghe Biotechnol Co Ltd, Shenzhen, Peoples R China
基金
中国国家自然科学基金; 英国生物技术与生命科学研究理事会; 国家重点研发计划;
关键词
PEROVSKITE SOLAR-CELLS; HALIDE PEROVSKITES; EFFICIENT;
D O I
10.1038/s41467-023-44511-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is a promising tool to study genomic rearrangements. However, the potential of SCRaMbLE to study genomic rearrangements is currently hindered, because a strain containing all 16 synthetic chromosomes is not yet available. Here, we construct SparLox83R, a yeast strain containing 83 loxPsym sites distributed across all 16 chromosomes. SCRaMbLE of SparLox83R produces versatile genome-wide genomic rearrangements, including inter-chromosomal events. Moreover, when combined with synthetic chromosomes, SCRaMbLE of hetero-diploids with SparLox83R leads to increased diversity of genomic rearrangements and relatively faster evolution of traits compared to hetero-diploids only with wild-type chromosomes. Analysis of the SCRaMbLEd strain with increased tolerance to nocodazole demonstrates that genomic rearrangements can perturb the transcriptome and 3D genome structure and consequently impact phenotypes. In summary, a genome with sparsely distributed loxPsym sites can serve as a powerful tool for studying the consequence of genomic rearrangements and accelerating strain engineering in Saccharomyces cerevisiae.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes
    New Projects Development Division, Toray Industries, Inc., 10-1 Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
    不详
    不详
    不详
    [J]. J. Biosci. Bioeng., 1600, 6 (675-682):
  • [22] Measuring the rate of gross chromosomal rearrangements in Saccharomyces cerevisiae:: A practical approach to study genomic rearrangements observed in cancer
    Motegi, Akira
    Myung, Kyungjae
    [J]. METHODS, 2007, 41 (02) : 168 - 176
  • [23] A large-scale overexpression screen in Saccharomyces cerevisiae identifies previously uncharacterized cell cycle genes
    Stevenson, LF
    Kennedy, BK
    Harlow, E
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) : 3946 - 3951
  • [24] Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes
    Ueda, Youji
    Ikushima, Shigehito
    Sugiyama, Minetaka
    Matoba, Ryo
    Kaneko, Yoshinobu
    Matsubara, Kenichi
    Harashima, Satoshi
    [J]. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2012, 113 (06) : 675 - 682
  • [25] Methods for large-scale analysis of gene expression, protein localization, and disruption phenotypes in Saccharomyces cerevisiae
    RossMacdonald, P
    Burns, N
    Malczynski, M
    Sheehan, A
    Roeder, S
    Snyder, M
    [J]. METHODS IN MOLECULAR AND CELLULAR BIOLOGY, 1995, 5 (05): : 298 - 308
  • [26] Visualizing large-scale genomic sequences
    Glusman, G
    Lancet, D
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (04): : 49 - 54
  • [27] On the analysis of large-scale genomic structures
    Nestor Norio Oiwa
    Carla Goldman
    [J]. Cell Biochemistry and Biophysics, 2005, 42 : 145 - 165
  • [28] On the analysis of large-scale genomic structures
    Oiwa, NN
    Goldman, C
    [J]. CELL BIOCHEMISTRY AND BIOPHYSICS, 2005, 42 (02) : 145 - 165
  • [29] Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster:: Large-scale organization and robustness
    Li, D
    Li, JQ
    Ouyang, SG
    Wang, J
    Wu, SF
    Wan, P
    Zhu, YP
    Xu, XJ
    He, FC
    [J]. PROTEOMICS, 2006, 6 (02) : 456 - 461
  • [30] LARGE-SCALE ANALYSIS OF GENE-EXPRESSION, PROTEIN LOCALIZATION, AND GENE DISRUPTION SACCHAROMYCES-CEREVISIAE
    BURNS, N
    GRIMWADE, B
    ROSSMACDONALD, PB
    CHOI, EY
    FINBERG, K
    ROEDER, GS
    SNYDER, M
    [J]. GENES & DEVELOPMENT, 1994, 8 (09) : 1087 - 1105