Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae

被引:5
|
作者
Cheng, Li [1 ]
Zhao, Shijun [1 ,2 ]
Li, Tianyi [1 ,12 ]
Hou, Sha [1 ]
Luo, Zhouqing [1 ,3 ]
Xu, Jinsheng [4 ]
Yu, Wenfei [1 ,2 ]
Jiang, Shuangying [1 ]
Monti, Marco [5 ]
Schindler, Daniel [5 ]
Zhang, Weimin [6 ,7 ]
Hou, Chunhui [8 ]
Ma, Yingxin [1 ]
Cai, Yizhi [1 ,5 ]
Boeke, Jef D. [6 ,7 ,9 ]
Dai, Junbiao [1 ,2 ,10 ,11 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Shenzhen Inst Adv Technol, Key Lab Quantitat Synthet Biol,Shenzhen Key Lab Sy, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Xiamen Univ, Innovat Ctr Cell Signaling Network, Sch Life Sci, State Key Lab Cellular Stress Biol, Xiamen 361102, Fujian, Peoples R China
[4] Huazhong Agr Univ, Dept Bioinformat, Wuhan 430070, Hubei, Peoples R China
[5] Univ Manchester, Manchester Inst Biotechnol, Manchester M1 7DN, England
[6] NYU Langone Hlth, Inst Syst Genet, New York, NY USA
[7] NYU Langone Hlth, Dept Biochem & Mol Pharmacol, New York, NY USA
[8] Chinese Acad Sci, Kunming Inst Zool, China State Key Lab Genet Resources & Evolut, Kunming 650223, Peoples R China
[9] NYU Tandon Sch Engn, Dept Biomed Engn, Brooklyn, NY 11201 USA
[10] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen Branch, Minist Agr & Rural Affairs,Guangdong Lab Lingnan M, Shenzhen, Peoples R China
[11] Shenzhen Univ, Coll Life Sci & Oceanog, 1066 Xueyuan Rd, Shenzhen 518055, Guangdong, Peoples R China
[12] Shenzhen Lianghe Biotechnol Co Ltd, Shenzhen, Peoples R China
基金
英国生物技术与生命科学研究理事会; 中国国家自然科学基金; 国家重点研发计划;
关键词
PEROVSKITE SOLAR-CELLS; HALIDE PEROVSKITES; EFFICIENT;
D O I
10.1038/s41467-023-44511-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is a promising tool to study genomic rearrangements. However, the potential of SCRaMbLE to study genomic rearrangements is currently hindered, because a strain containing all 16 synthetic chromosomes is not yet available. Here, we construct SparLox83R, a yeast strain containing 83 loxPsym sites distributed across all 16 chromosomes. SCRaMbLE of SparLox83R produces versatile genome-wide genomic rearrangements, including inter-chromosomal events. Moreover, when combined with synthetic chromosomes, SCRaMbLE of hetero-diploids with SparLox83R leads to increased diversity of genomic rearrangements and relatively faster evolution of traits compared to hetero-diploids only with wild-type chromosomes. Analysis of the SCRaMbLEd strain with increased tolerance to nocodazole demonstrates that genomic rearrangements can perturb the transcriptome and 3D genome structure and consequently impact phenotypes. In summary, a genome with sparsely distributed loxPsym sites can serve as a powerful tool for studying the consequence of genomic rearrangements and accelerating strain engineering in Saccharomyces cerevisiae.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae
    Li Cheng
    Shijun Zhao
    Tianyi Li
    Sha Hou
    Zhouqing Luo
    Jinsheng Xu
    Wenfei Yu
    Shuangying Jiang
    Marco Monti
    Daniel Schindler
    Weimin Zhang
    Chunhui Hou
    Yingxin Ma
    Yizhi Cai
    Jef D. Boeke
    Junbiao Dai
    [J]. Nature Communications, 15
  • [2] Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae
    Enyenihi, AH
    Saunders, WS
    [J]. GENETICS, 2003, 163 (01) : 47 - 54
  • [3] Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae
    Jeanne Boyer
    Gwenaël Badis
    Cécile Fairhead
    Emmanuel Talla
    Florence Hantraye
    Emmanuelle Fabre
    Gilles Fischer
    Christophe Hennequin
    Romain Koszul
    Ingrid Lafontaine
    Odile Ozier-Kalogeropoulos
    Miria Ricchetti
    Guy-Franck Richard
    Agnès Thierry
    Bernard Dujon
    [J]. Genome Biology, 5
  • [4] Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae
    Samanfar, Bahram
    Omidi, Katayoun
    Hooshyar, Mohsen
    Laliberte, Ben
    Alamgir, M. D.
    Seal, Andrew J.
    Ahmed-Muhsin, Eman
    Viteri, Duber Frey
    Said, Kamaleldin
    Chalabian, Firoozeh
    Golshani, Ardeshir
    Wainer, Gabriel
    Burnside, Daniel
    Shostak, Kristina
    Bugno, Magdalena
    Willmore, William G.
    Smith, Myron L.
    Golshani, Ashkan
    [J]. MOLECULAR BIOSYSTEMS, 2013, 9 (06) : 1351 - 1359
  • [5] Large-scale protein structure modeling of the Saccharomyces cerevisiae genome
    Sánchez, R
    Sali, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) : 13597 - 13602
  • [6] Large-scale production of VHH antibody fragments by Saccharomyces cerevisiae
    Thomassen, YE
    Meijer, W
    Sierkstra, L
    Verrips, CT
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2002, 30 (03) : 273 - 278
  • [7] Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma
    Sun, Yu
    Svedberg, Jesper
    Hiltunen, Markus
    Corcoran, Padraic
    Johannesson, Hanna
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma
    Yu Sun
    Jesper Svedberg
    Markus Hiltunen
    Pádraic Corcoran
    Hanna Johannesson
    [J]. Nature Communications, 8
  • [9] Identification and characterization of large-scale genomic rearrangements during wheat evolution
    Bariah, Inbar
    Keidar-Friedman, Danielle
    Kashkush, Khalil
    [J]. PLOS ONE, 2020, 15 (04):
  • [10] Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae
    Li, Xue
    Gerber, Scott A.
    Rudner, Adam D.
    Beausoleil, Sean A.
    Haas, Wilhelm
    Villen, Judit
    Elias, Joshua E.
    Gygi, Steve P.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2007, 6 (03) : 1190 - 1197