Off-shell Partition Functions in 3d Gravity

被引:5
|
作者
Eberhardt, Lorenz [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Einstein Dr 1, Princeton, NJ 08540 USA
关键词
MODULI SPACE; INTERSECTION THEORY; FIELD-THEORIES; GAUGE-THEORIES; CURVES; EQUATIONS; QUANTIZATION; INVARIANTS; PARTICLES; HOMOLOGY;
D O I
10.1007/s00220-024-04963-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore three-dimensional gravity with negative cosmological constant via canonical quantization. We focus on chiral gravity which is related to a single copy of PSL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}(2,\mathbb {R})$$\end{document} Chern-Simons theory and is simpler to treat in canonical quantization. Its phase space for an initial value surface sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is given by the appropriate moduli space of Riemann surfaces. We use geometric quantization to compute partition functions of chiral gravity on three-manifolds of the form sigma xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \times {{\,\textrm{S}\,}}<^>1$$\end{document}, where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} can have asymptotic boundaries. Most of these topologies do not admit a classical solution and are thus not amenable to a direct semiclassical path integral computation. We use an index theorem that expresses the partition function as an integral of characteristic classes over phase space. In the presence of n asymptotic boundaries, we use techniques from equivariant cohomology to localize the integral to a finite-dimensional integral over M over bar g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {M}}_{g,n}$$\end{document}, which we evaluate in low genus cases. Higher genus partition functions quickly become complicated since they depend in an oscillatory way on Newton's constant. There is a precise sense in which one can isolate the non-oscillatory part which we call the fake partition function. We establish that there is a topological recursion that computes the fake partition functions for arbitrary Riemann surfaces sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}. There is a scaling limit in which the model reduces to JT gravity and our methods give a novel way to compute JT partition functions via equivariant localization.
引用
收藏
页数:78
相关论文
共 50 条
  • [41] 3D Quantum Gravity Partition Function at Three Loops
    Leston, Mauricio
    Goya, Andres
    Perez-Nadal, Guillem
    Passaglia, Mario
    Giribet, Gaston
    PHYSICAL REVIEW LETTERS, 2023, 131 (08)
  • [42] OFF-SHELL EFFECTS IN 3-NUCLEON SYSTEM
    BAHETHI, OP
    FUDA, MG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (04): : 439 - &
  • [43] OFF-SHELL EFFECTS IN 3-NUCLEON PROBLEM
    FIEDELDEY, H
    PHYSICS LETTERS B, 1969, B 30 (09) : 603 - +
  • [44] OFF-SHELL EFFECTS IN 3-NUCLEON SYSTEM
    MCGURK, NJ
    DEGROOT, H
    NUCLEAR PHYSICS A, 1974, A231 (02) : 233 - 242
  • [45] OFF-SHELL EFFECTS IN 3-NUCLEON SYSTEM
    BAHETHI, OP
    FUDA, MG
    PHYSICAL REVIEW C, 1972, 6 (06): : 1956 - 1963
  • [46] Off-shell amplitudes and Grassmannians
    Bork, L. V.
    Onishchenko, A. I.
    PHYSICS OF PARTICLES AND NUCLEI, 2017, 48 (05) : 810 - 812
  • [47] Off-shell amplitudes and Grassmannians
    L. V. Bork
    A. I. Onishchenko
    Physics of Particles and Nuclei, 2017, 48 : 810 - 812
  • [48] OFF-SHELL EQUIVALENCE IN 3-BODY SCATTERING
    BRAYSHAW, DD
    PHYSICAL REVIEW C, 1976, 13 (03): : 1024 - 1035
  • [49] OFF-SHELL VARIATIONAL BOUNDS
    WARBURTON, AEA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (06): : 1247 - 1250
  • [50] Off-shell Green functions: One-loop with growing legs
    Bashir, A.
    Concha-Sanchez, Y.
    Delbourgo, R.
    Tejeda-Yeomans, M. E.
    PARTICLES AND FIELDS: XI MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2008, 1026 : 127 - +