Off-shell Partition Functions in 3d Gravity

被引:5
|
作者
Eberhardt, Lorenz [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Einstein Dr 1, Princeton, NJ 08540 USA
关键词
MODULI SPACE; INTERSECTION THEORY; FIELD-THEORIES; GAUGE-THEORIES; CURVES; EQUATIONS; QUANTIZATION; INVARIANTS; PARTICLES; HOMOLOGY;
D O I
10.1007/s00220-024-04963-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore three-dimensional gravity with negative cosmological constant via canonical quantization. We focus on chiral gravity which is related to a single copy of PSL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}(2,\mathbb {R})$$\end{document} Chern-Simons theory and is simpler to treat in canonical quantization. Its phase space for an initial value surface sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is given by the appropriate moduli space of Riemann surfaces. We use geometric quantization to compute partition functions of chiral gravity on three-manifolds of the form sigma xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \times {{\,\textrm{S}\,}}<^>1$$\end{document}, where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} can have asymptotic boundaries. Most of these topologies do not admit a classical solution and are thus not amenable to a direct semiclassical path integral computation. We use an index theorem that expresses the partition function as an integral of characteristic classes over phase space. In the presence of n asymptotic boundaries, we use techniques from equivariant cohomology to localize the integral to a finite-dimensional integral over M over bar g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {M}}_{g,n}$$\end{document}, which we evaluate in low genus cases. Higher genus partition functions quickly become complicated since they depend in an oscillatory way on Newton's constant. There is a precise sense in which one can isolate the non-oscillatory part which we call the fake partition function. We establish that there is a topological recursion that computes the fake partition functions for arbitrary Riemann surfaces sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}. There is a scaling limit in which the model reduces to JT gravity and our methods give a novel way to compute JT partition functions via equivariant localization.
引用
收藏
页数:78
相关论文
共 50 条
  • [31] COULOMB AND COULOMB-LIKE OFF-SHELL JOST FUNCTIONS
    VANHAERINGEN, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) : 1109 - 1114
  • [32] Off-shell Hodge dualities in linearised gravity and E11
    Boulanger, Nicolas
    Cook, Paul P.
    Ponomarev, Dmitry
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):
  • [33] OFF-SHELL EFFECTS IN (D,P) STRIPPING REACTIONS
    PANTIS, G
    CANADIAN JOURNAL OF PHYSICS, 1978, 56 (06) : 659 - 668
  • [34] Off-shell Hodge dualities in linearised gravity and E11
    Nicolas Boulanger
    Paul. P. Cook
    Dmitry Ponomarev
    Journal of High Energy Physics, 2012
  • [35] GREEN-FUNCTIONS FOR OFF-SHELL ELECTROMAGNETISM AND SPACELIKE CORRELATIONS
    LAND, MC
    HORWITZ, LP
    FOUNDATIONS OF PHYSICS, 1991, 21 (03) : 299 - 316
  • [36] SIMPLE ANALYTIC EXPRESSIONS FOR COULOMB OFF-SHELL JOST FUNCTIONS
    VANHAERINGEN, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (06) : 1379 - 1380
  • [37] EQUATIONS FOR SCATTERING-AMPLITUDE FUNCTIONS AND OFF-SHELL UNITARITY
    TALUKDAR, B
    MALLICK, N
    ROY, D
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1981, 7 (08) : 1103 - 1113
  • [38] 3D Quantum Gravity Partition Function at Three Loops
    Leston, Mauricio
    Goya, Andres
    Perez-Nadal, Guillem
    Passaglia, Mario
    Giribet, Gaston
    PHYSICAL REVIEW LETTERS, 2023, 131 (18)
  • [39] The off-shell 4D/5D connection
    Nabamita Banerjee
    Bernard de Wit
    Stefanos Katmadas
    Journal of High Energy Physics, 2012
  • [40] The off-shell 4D/5D connection
    Banerjee, Nabamita
    de Wit, Bernard
    Katmadas, Stefanos
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):