Off-shell Partition Functions in 3d Gravity

被引:5
|
作者
Eberhardt, Lorenz [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Einstein Dr 1, Princeton, NJ 08540 USA
关键词
MODULI SPACE; INTERSECTION THEORY; FIELD-THEORIES; GAUGE-THEORIES; CURVES; EQUATIONS; QUANTIZATION; INVARIANTS; PARTICLES; HOMOLOGY;
D O I
10.1007/s00220-024-04963-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore three-dimensional gravity with negative cosmological constant via canonical quantization. We focus on chiral gravity which is related to a single copy of PSL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}(2,\mathbb {R})$$\end{document} Chern-Simons theory and is simpler to treat in canonical quantization. Its phase space for an initial value surface sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is given by the appropriate moduli space of Riemann surfaces. We use geometric quantization to compute partition functions of chiral gravity on three-manifolds of the form sigma xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \times {{\,\textrm{S}\,}}<^>1$$\end{document}, where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} can have asymptotic boundaries. Most of these topologies do not admit a classical solution and are thus not amenable to a direct semiclassical path integral computation. We use an index theorem that expresses the partition function as an integral of characteristic classes over phase space. In the presence of n asymptotic boundaries, we use techniques from equivariant cohomology to localize the integral to a finite-dimensional integral over M over bar g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {M}}_{g,n}$$\end{document}, which we evaluate in low genus cases. Higher genus partition functions quickly become complicated since they depend in an oscillatory way on Newton's constant. There is a precise sense in which one can isolate the non-oscillatory part which we call the fake partition function. We establish that there is a topological recursion that computes the fake partition functions for arbitrary Riemann surfaces sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}. There is a scaling limit in which the model reduces to JT gravity and our methods give a novel way to compute JT partition functions via equivariant localization.
引用
收藏
页数:78
相关论文
共 50 条
  • [1] Off-shell Partition Functions in 3d Gravity
    Lorenz Eberhardt
    Communications in Mathematical Physics, 2024, 405
  • [2] On-shell versus off-shell equivalence in 3D gravity
    Bergshoeff, Eric A.
    Merbis, Wout
    Townsend, Paul K.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (09)
  • [3] Calculation of the off-shell renormalization functions in R-2 gravity
    Kalmykov, MY
    Kazakov, DI
    PHYSICS LETTERS B, 1997, 404 (3-4) : 253 - 258
  • [4] Off-shell divergences in quantum gravity
    Mandric, Vlad-Mihai
    Morris, Tim R.
    Stulga, Dalius
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [5] Off-shell divergences in quantum gravity
    Vlad-Mihai Mandric
    Tim R. Morris
    Dalius Stulga
    Journal of High Energy Physics, 2023
  • [6] Off-shell diagrammatics for quantum gravity
    Kissler, Henry
    PHYSICS LETTERS B, 2021, 816
  • [7] Partition functions on 3d circle bundles and their gravity duals
    Toldo, Chiara
    Willett, Brian
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [8] One-loop partition functions of 3D gravity
    Giombi, Simone
    Maloney, Alexander
    Yin, Xi
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (08):
  • [9] Partition functions on 3d circle bundles and their gravity duals
    Chiara Toldo
    Brian Willett
    Journal of High Energy Physics, 2018
  • [10] Conformal anomaly and off-shell extensions of gravity
    Meissner, Krzysztof A.
    Nicolai, Hermann
    PHYSICAL REVIEW D, 2017, 96 (04)