We explore three-dimensional gravity with negative cosmological constant via canonical quantization. We focus on chiral gravity which is related to a single copy of PSL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}(2,\mathbb {R})$$\end{document} Chern-Simons theory and is simpler to treat in canonical quantization. Its phase space for an initial value surface sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is given by the appropriate moduli space of Riemann surfaces. We use geometric quantization to compute partition functions of chiral gravity on three-manifolds of the form sigma xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \times {{\,\textrm{S}\,}}<^>1$$\end{document}, where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} can have asymptotic boundaries. Most of these topologies do not admit a classical solution and are thus not amenable to a direct semiclassical path integral computation. We use an index theorem that expresses the partition function as an integral of characteristic classes over phase space. In the presence of n asymptotic boundaries, we use techniques from equivariant cohomology to localize the integral to a finite-dimensional integral over M over bar g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {M}}_{g,n}$$\end{document}, which we evaluate in low genus cases. Higher genus partition functions quickly become complicated since they depend in an oscillatory way on Newton's constant. There is a precise sense in which one can isolate the non-oscillatory part which we call the fake partition function. We establish that there is a topological recursion that computes the fake partition functions for arbitrary Riemann surfaces sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}. There is a scaling limit in which the model reduces to JT gravity and our methods give a novel way to compute JT partition functions via equivariant localization.
机构:
Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USAColumbia Univ City New York, Pupin Hall,538 West 120th St, New York, NY 10027 USA