Modulatory role of terminal monomeric flavan-3-ol units in the viscoelasticity of dentin

被引:1
|
作者
Reis-Havlat, Mariana [1 ,4 ]
Alania, Yvette [1 ]
Zhou, Bin [2 ,3 ]
Jing, Shu-Xi [2 ,3 ]
Mcalpine, James B. [2 ,3 ]
Chen, Shao-Nong [2 ,3 ]
Pauli, Guido F. [2 ,3 ]
Bedran-Russo, Ana K. [1 ,4 ]
机构
[1] Marquette Univ, Sch Dent, Dept Gen Dent Sci, Milwaukee, WI USA
[2] Univ Illinois, Pharmacognosy Inst, Coll Pharm, Chicago, IL 60612 USA
[3] Univ Illinois, Coll Pharm, Dept Pharmaceut Sci PSCI, Chicago, IL 60612 USA
[4] Univ Illinois, Coll Dent, Dept Oral Biol, 801 South Paulina St,Room 402E, Chicago, IL 60612 USA
关键词
dentin; dynamic mechanical analysis; extracellular matrix; infrared spectroscopy; nano-mechanical analysis; proanthocyanidins; OLIGOMERIC PROANTHOCYANIDINS; TEA CATECHINS; MECHANICAL-PROPERTIES; CROSS-LINKING; COLLAGEN; MATRIX; BEHAVIOR; POLYPHENOLS; PROTEOGLYCANS; INHIBITION;
D O I
10.1002/jbm.b.35333
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Flavan-3-ol monomers are the building blocks of proanthocyanidins (PACs), natural compounds from plants shown to mediate specific biologic activities on dentin. While the stereochemistry of the terminal flavan-3-ols, catechin (C) versus epicatechin (EC), impacts the biomechanical properties of the dentin matrix treated with oligomeric PACs, structure-activity relationships driving this bioactivity remain elusive. To gain insights into the modulatory role of the terminal monomers, two highly congruent trimeric PACs from Pinus massoniana only differing in the stereochemistry of the terminal unit (Trimer-C vs. Trimer-EC) were prepared to evaluate their chemical characteristics as well as their effects on the viscoelasticity and biostability of biomodified dentin matrices via infrared spectroscopy and multi-scale dynamic mechanical analyses. The subtle alteration of C versus EC as terminal monomers lead to distinct immediate PAC-trimer biomodulation of the dentin matrix. Nano- and micro-dynamic mechanical analyses revealed that Trimer-EC increased the complex moduli (0.51 GPa) of dentin matrix more strongly than Trimer-C (0.26 GPa) at the nanoscale length (p < 0.001), whereas the reverse was found at the microscale length (p < .001). The damping capacity (tan delta) of dentin matrix decreased by 70% after PAC treatment at the nano-length scale, while increased values were found at the micro-length scale (similar to 0.24) compared to the control (0.18 ; p < .001). An increase in amide band intensities and a decrease of complex moduli was observed after storage in simulated body fluid for both Trimer-C and Trimer-EC modified dentin. The stereochemical configuration of the terminal monomeric units, C and EC, did not impact the chemo-mechanical stability of dentin matrix.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Accelerated Solvent Extraction of Flavan-3-OL Derivatives from Grape Seeds
    Bozan, Berrin
    Altinay, R. Cigdem
    FOOD SCIENCE AND TECHNOLOGY RESEARCH, 2014, 20 (02) : 409 - 414
  • [32] Localization of Flavan-3-ol Species in Peanut Testa by Mass Spectrometry Imaging
    Enomoto, Hirofumi
    Nirasawa, Takashi
    MOLECULES, 2020, 25 (10):
  • [33] Evaluation of (-)-epicatechin metabolites as recovery biomarker of dietary flavan-3-ol intake
    Ottaviani, Javier I.
    Fong, Reedmond
    Kimball, Jennifer
    Ensunsa, Jodi L.
    Gray, Nicola
    Vogiatzoglou, Anna
    Britten, Abigail
    Lucarelli, Debora
    Luben, Robert
    Grace, Philip B.
    Mawson, Deborah H.
    Tym, Amy
    Wierzbicki, Antonia
    Smith, A. David
    Wareham, Nicholas J.
    Forouhi, Nita G.
    Khaw, Kay-Tee
    Schroeter, Hagen
    Kuhnle, Gunter G. C.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [34] COMPARATIVE FLAVAN-3-OL COMPOSITION OF SEEDS FROM DIFFERENT GRAPE VARIETIES
    SANTOSBUELGA, C
    FRANCIAARICHA, EM
    ESCRIBANOBAILON, MT
    FOOD CHEMISTRY, 1995, 53 (02) : 197 - 201
  • [35] (-)-Catechin in cocoa and chocolate: Occurence and analysis of an atypical flavan-3-ol enantiomer
    Kofink, Michael
    Papagiannopoulos, Menelaos
    Galensa, Rudolf
    MOLECULES, 2007, 12 (07): : 1274 - 1288
  • [36] Flavan-3-ol localization in meristem regions of Zea mays and Phaseolus vulgaris roots
    Sosa, JL
    Zavala, ME
    MOLECULAR BIOLOGY OF THE CELL, 1998, 9 : 180A - 180A
  • [37] Plant aging and excess light enhance flavan-3-ol content in Cistus clusii
    Hernandez, Iker
    Alegre, Leonor
    Munne-Bosch, Sergi
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (02) : 96 - 102
  • [38] Careyarboside A: A New Flavan-3-ol Glycoside from the Stems of Careya arborea (Lecythidaceae)
    Jeong, Yeon Woo
    Lee, Jung A.
    Ahn, Eun-Kyung
    Kang, Jae-Shin
    Byun, Hye Woo
    Omaliss, H. E. Keo
    Choi, Chun Whan
    Hong, Seong Su
    JOURNAL OF CHEMISTRY, 2023, 2023
  • [39] Dark chocolate modulates platelet function with a mechanism mediated by flavan-3-ol metabolites
    Montagnana, Martina
    Danese, Elisa
    Angelino, Donato
    Mena, Pedro
    Rosi, Alice
    Benati, Marco
    Gelati, Matteo
    Salvagno, Gian Luca
    Favaloro, Emmanuel J.
    Del Rio, Daniele
    Lippi, Giuseppe
    MEDICINE, 2018, 97 (49)
  • [40] Dimeric glycosylated flavan-3-ol and antimicrobial in vitro evaluation of Trichilia catigua extracts
    Ritter, Mariane Roberta
    de Oliveira, Marcelo Tempesta
    Makimori, Regina Yasuko
    Sereia, Ana Luiza
    Simionato, Ane Stefano
    Chierrito, Danielly
    Andrade Filho, Galdino
    de Oliveira, Admilton Goncalves
    da Silva, Denise Brentan
    Novello, Claudio Roberto
    de Medeiros, Daniela Cristina
    Dias Filho, Benedito Prado
    de Mello, Joao Carlos Palazzo
    NATURAL PRODUCT RESEARCH, 2021, 35 (19) : 3293 - 3300