Modulatory role of terminal monomeric flavan-3-ol units in the viscoelasticity of dentin

被引:1
|
作者
Reis-Havlat, Mariana [1 ,4 ]
Alania, Yvette [1 ]
Zhou, Bin [2 ,3 ]
Jing, Shu-Xi [2 ,3 ]
Mcalpine, James B. [2 ,3 ]
Chen, Shao-Nong [2 ,3 ]
Pauli, Guido F. [2 ,3 ]
Bedran-Russo, Ana K. [1 ,4 ]
机构
[1] Marquette Univ, Sch Dent, Dept Gen Dent Sci, Milwaukee, WI USA
[2] Univ Illinois, Pharmacognosy Inst, Coll Pharm, Chicago, IL 60612 USA
[3] Univ Illinois, Coll Pharm, Dept Pharmaceut Sci PSCI, Chicago, IL 60612 USA
[4] Univ Illinois, Coll Dent, Dept Oral Biol, 801 South Paulina St,Room 402E, Chicago, IL 60612 USA
关键词
dentin; dynamic mechanical analysis; extracellular matrix; infrared spectroscopy; nano-mechanical analysis; proanthocyanidins; OLIGOMERIC PROANTHOCYANIDINS; TEA CATECHINS; MECHANICAL-PROPERTIES; CROSS-LINKING; COLLAGEN; MATRIX; BEHAVIOR; POLYPHENOLS; PROTEOGLYCANS; INHIBITION;
D O I
10.1002/jbm.b.35333
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Flavan-3-ol monomers are the building blocks of proanthocyanidins (PACs), natural compounds from plants shown to mediate specific biologic activities on dentin. While the stereochemistry of the terminal flavan-3-ols, catechin (C) versus epicatechin (EC), impacts the biomechanical properties of the dentin matrix treated with oligomeric PACs, structure-activity relationships driving this bioactivity remain elusive. To gain insights into the modulatory role of the terminal monomers, two highly congruent trimeric PACs from Pinus massoniana only differing in the stereochemistry of the terminal unit (Trimer-C vs. Trimer-EC) were prepared to evaluate their chemical characteristics as well as their effects on the viscoelasticity and biostability of biomodified dentin matrices via infrared spectroscopy and multi-scale dynamic mechanical analyses. The subtle alteration of C versus EC as terminal monomers lead to distinct immediate PAC-trimer biomodulation of the dentin matrix. Nano- and micro-dynamic mechanical analyses revealed that Trimer-EC increased the complex moduli (0.51 GPa) of dentin matrix more strongly than Trimer-C (0.26 GPa) at the nanoscale length (p < 0.001), whereas the reverse was found at the microscale length (p < .001). The damping capacity (tan delta) of dentin matrix decreased by 70% after PAC treatment at the nano-length scale, while increased values were found at the micro-length scale (similar to 0.24) compared to the control (0.18 ; p < .001). An increase in amide band intensities and a decrease of complex moduli was observed after storage in simulated body fluid for both Trimer-C and Trimer-EC modified dentin. The stereochemical configuration of the terminal monomeric units, C and EC, did not impact the chemo-mechanical stability of dentin matrix.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Antioxidant benzoylated flavan-3-ol glycoside from Celastrus orbiculatus
    Hwang, BY
    Kim, HS
    Lee, JH
    Hong, YS
    Ro, JS
    Lee, KS
    Lee, JJ
    JOURNAL OF NATURAL PRODUCTS, 2001, 64 (01): : 82 - 84
  • [22] Tea is the major source of flavan-3-ol and flavonol in the US diet
    Song, Won O.
    Chun, Ock K.
    JOURNAL OF NUTRITION, 2008, 138 (08): : 1543 - 1547
  • [23] A new flavan-3-ol from Artocarpus nitidus subsp lingnanensis
    Ti, Hui-Hui
    Lin, Li-Dong
    Ding, Wen-Bing
    Wei, Xiao-Yi
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2012, 14 (06) : 555 - 558
  • [24] Tyrosinase catalysed biphenyl construction from flavan-3-ol substrates
    van Rensburg, WJ
    Ferreira, D
    Malan, E
    Steenkamp, JA
    PHYTOCHEMISTRY, 2000, 53 (02) : 285 - 292
  • [25] Potential cardiovascular system-protective effects of flavan-3-ol
    Zeng, Qiao-Hui
    Zhang, Xue-Wu
    Jiang, Jian-Guo
    MOLECULAR NUTRITION & FOOD RESEARCH, 2013, 57 (10) : 1693 - 1694
  • [26] A bioactive flavan-3-ol from the stem bark of Neocarya macrophylla
    Yusuf, A. J.
    Abdullahi, M., I
    Musa, A. M.
    Haruna, A. K.
    Mzozoyana, V
    Biambo, A. A.
    Abubakar, H.
    SCIENTIFIC AFRICAN, 2020, 7
  • [27] Antioxidative flavan-3-ol glycosides from stems of Rhizophora stylosa
    Takara, Kensaku
    Kuniyoshi, Ayako
    Wada, Koji
    Kinjyo, Kazuhiko
    Iwasaki, Hironori
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2008, 72 (08) : 2191 - 2194
  • [28] The flavone, flavonol and flavan-3-ol content of the Greek traditional diet
    Dilis, Vardis
    Vasilopoulou, Effie
    Trichopoulou, Antonia
    FOOD CHEMISTRY, 2007, 105 (02) : 812 - 821
  • [29] Characterization of new flavan-3-ol derivatives in fermented cocoa beans
    Fayeulle, Noemie
    Vallverdu-Queralt, Anna
    Meudec, Emmanuelle
    Hue, Clotilde
    Boulanger, Renaud
    Cheynier, Veronique
    Sommerer, Nicolas
    FOOD CHEMISTRY, 2018, 259 : 207 - 212
  • [30] Evaluation of (−)-epicatechin metabolites as recovery biomarker of dietary flavan-3-ol intake
    Javier I. Ottaviani
    Reedmond Fong
    Jennifer Kimball
    Jodi L. Ensunsa
    Nicola Gray
    Anna Vogiatzoglou
    Abigail Britten
    Debora Lucarelli
    Robert Luben
    Philip B. Grace
    Deborah H. Mawson
    Amy Tym
    Antonia Wierzbicki
    A. David Smith
    Nicholas J. Wareham
    Nita G. Forouhi
    Kay-Tee Khaw
    Hagen Schroeter
    Gunter G. C. Kuhnle
    Scientific Reports, 9