Future changes in Antarctic coastal polynyas and bottom water formation simulated by a high-resolution coupled model

被引:1
|
作者
Jeong, Hyein [1 ,2 ]
Lee, Sun-Seon [3 ,4 ]
Park, Hyo-Seok [1 ,2 ]
Stewart, Andrew L. [5 ]
机构
[1] Hanyang Univ, Inst Ocean & Atmospher Sci IOAS, Ansan, South Korea
[2] Hanyang Univ, Dept Marine Sci & Convergence Engn, Ansan, South Korea
[3] Inst Basic Sci, Ctr Climate Phys, Busan, South Korea
[4] Pusan Natl Univ, Busan, South Korea
[5] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2023年 / 4卷 / 01期
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
SOUTHERN-OCEAN POLYNYAS; SEA-ICE EXTENT; WEDDELL SEA; MASS TRANSFORMATION; DEEP-WATER; VARIABILITY; CIRCULATION; SLOWDOWN;
D O I
10.1038/s43247-023-01156-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Antarctic coastal polynyas produce Dense Shelf Water, a precursor to Antarctic Bottom Waters that supply the global abyssal circulation. Future projections of Dense Shelf Water formation are hindered by unresolved small-scale atmosphere-sea ice-ocean interactions in polynyas. Here, we investigate the future evolution of Antarctic coastal polynyas using a high-resolution ocean-ice-atmosphere model. We find that wintertime sea ice production rates remain active even under elevated atmospheric CO2 concentrations. Antarctic winter sea ice production rates are sensitive to atmospheric CO2 concentrations: doubling CO2 (734 ppm) decreases sea ice production by only 6-8%, versus 10-30% under CO2 quadrupling (1468 ppm). While considerable uncertainty remains in future ice-shelf basal melting, which is not accounted for in this study, doubling or quadrupling CO2 substantially freshens Dense Shelf Water due to increased precipitation. Consequently, doubling CO2 weakens Dense Shelf Water formation by similar to 75%, while CO2 quadrupling shuts down Dense Shelf Water formation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Coastal water bathymetry retrieval using high-resolution remote sensing data
    Vilar, Pedro
    Moura, Ana
    Lamas, Luisa
    Guerreiro, Rui
    Pinto, Jose Paulo
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2018, 2018, 10784
  • [42] Development of high-resolution future ocean regional projection datasets for coastal applications in Japan
    Shiro Nishikawa
    Tsuyoshi Wakamatsu
    Hiroshi Ishizaki
    Kei Sakamoto
    Yusuke Tanaka
    Hiroyuki Tsujino
    Goro Yamanaka
    Masafumi Kamachi
    Yoichi Ishikawa
    Progress in Earth and Planetary Science, 8
  • [43] Development of high-resolution future ocean regional projection datasets for coastal applications in Japan
    Nishikawa, Shiro
    Wakamatsu, Tsuyoshi
    Ishizaki, Hiroshi
    Sakamoto, Kei
    Tanaka, Yusuke
    Tsujino, Hiroyuki
    Yamanaka, Goro
    Kamachi, Masafumi
    Ishikawa, Yoichi
    PROGRESS IN EARTH AND PLANETARY SCIENCE, 2021, 8 (01)
  • [44] Determination of water depth with high-resolution satellite imagery over variable bottom types
    Stumpf, RP
    Holderied, K
    Sinclair, M
    LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (01) : 547 - 556
  • [45] Retrieval of tropical cyclone statistics with a high-resolution coupled model and data
    Zhang, S.
    Zhao, M.
    Lin, S. -J.
    Yang, X.
    Anderson, W.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (02) : 652 - 660
  • [46] The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model
    Larson, Sarah
    Kirtman, Ben
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (12) : 3189 - 3194
  • [47] Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model
    Liu, H. -L.
    McInerney, J. M.
    Santos, S.
    Lauritzen, P. H.
    Taylor, M. A.
    Pedatella, N. M.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (24) : 9106 - 9112
  • [48] Effects of coastal topography on climate: high-resolution simulation with a regional climate model
    Onol, Baris
    CLIMATE RESEARCH, 2012, 52 (01) : 159 - 174
  • [50] CoastFLOOD: A High-Resolution Model for the Simulation of Coastal Inundation Due to Storm Surges
    Makris, Christos
    Mallios, Zisis
    Androulidakis, Yannis
    Krestenitis, Yannis
    HYDROLOGY, 2023, 10 (05)