Future changes in Antarctic coastal polynyas and bottom water formation simulated by a high-resolution coupled model

被引:1
|
作者
Jeong, Hyein [1 ,2 ]
Lee, Sun-Seon [3 ,4 ]
Park, Hyo-Seok [1 ,2 ]
Stewart, Andrew L. [5 ]
机构
[1] Hanyang Univ, Inst Ocean & Atmospher Sci IOAS, Ansan, South Korea
[2] Hanyang Univ, Dept Marine Sci & Convergence Engn, Ansan, South Korea
[3] Inst Basic Sci, Ctr Climate Phys, Busan, South Korea
[4] Pusan Natl Univ, Busan, South Korea
[5] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2023年 / 4卷 / 01期
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
SOUTHERN-OCEAN POLYNYAS; SEA-ICE EXTENT; WEDDELL SEA; MASS TRANSFORMATION; DEEP-WATER; VARIABILITY; CIRCULATION; SLOWDOWN;
D O I
10.1038/s43247-023-01156-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Antarctic coastal polynyas produce Dense Shelf Water, a precursor to Antarctic Bottom Waters that supply the global abyssal circulation. Future projections of Dense Shelf Water formation are hindered by unresolved small-scale atmosphere-sea ice-ocean interactions in polynyas. Here, we investigate the future evolution of Antarctic coastal polynyas using a high-resolution ocean-ice-atmosphere model. We find that wintertime sea ice production rates remain active even under elevated atmospheric CO2 concentrations. Antarctic winter sea ice production rates are sensitive to atmospheric CO2 concentrations: doubling CO2 (734 ppm) decreases sea ice production by only 6-8%, versus 10-30% under CO2 quadrupling (1468 ppm). While considerable uncertainty remains in future ice-shelf basal melting, which is not accounted for in this study, doubling or quadrupling CO2 substantially freshens Dense Shelf Water due to increased precipitation. Consequently, doubling CO2 weakens Dense Shelf Water formation by similar to 75%, while CO2 quadrupling shuts down Dense Shelf Water formation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The future of Antarctica's surface winds simulated by a high-resolution global climate model: 1. Model description and validation
    Bintanja, R.
    Severijns, C.
    Haarsma, R.
    Hazeleger, W.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (12) : 7136 - 7159
  • [32] The future of Antarctica's surface winds simulated by a high-resolution global climate model: 2. Drivers of 21st century changes
    Bintanja, R.
    Severijns, C.
    Haarsma, R.
    Hazeleger, W.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (12) : 7160 - 7178
  • [33] Relative dispersion from a high-resolution coastal model of the Adriatic Sea
    Haza, Angelique C.
    Poje, Andrew C.
    Ozgokmen, Tarnay M.
    Martin, Paul
    OCEAN MODELLING, 2008, 22 (1-2) : 48 - 65
  • [34] A high-resolution coastal circulation model for Lunenburg Bay, Nova Scotia
    Sheng, JY
    Wang, L
    ESTUARINE AND COASTAL MODELING, PROCEEDINGS, 2004, : 372 - 387
  • [35] A high-resolution model of soil and surface water conditions
    Maclean, Ilya M. D.
    Bennie, Jonathan J.
    Scott, Amanda J.
    Wilson, Robert J.
    ECOLOGICAL MODELLING, 2012, 237 : 109 - 119
  • [36] A Rapid Extraction of Water Body Features From Antarctic Coastal Oasis Using Very High-Resolution Satellite Remote Sensing Data
    Jawak, S. D.
    Luis, A. J.
    INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE'15), 2015, 4 : 125 - 132
  • [37] On convection and the formation of Subantarctic Mode Water in the Fine Resolution Antarctic Model (FRAM)
    Ribbe, J
    Tomczak, M
    JOURNAL OF MARINE SYSTEMS, 1997, 13 (1-4) : 137 - 154
  • [39] High-Resolution Operational Coastal Modeling System for the Prediction of Hydrodynamics in Korea Using a Wave-Current Coupled Model
    Lim, Hak-Soo
    Chun, Insik
    Kim, Chang Shik
    Park, Kwang Soon
    Shim, Jae Seol
    Yoon, Jong Joo
    JOURNAL OF COASTAL RESEARCH, 2013, : 314 - 319
  • [40] Investigating future precipitation changes over China through a high-resolution regional climate model ensemble
    Guo, Junhong
    Huang, Guohe
    Wang, Xiuquan
    Li, Yongping
    Lin, Qianguo
    EARTHS FUTURE, 2017, 5 (03) : 285 - 303