Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation

被引:66
|
作者
Xu, Quan [1 ]
Chen, Xiongjian [1 ]
Chen, Bei [1 ]
Wu, Huagan [1 ]
Li, Ze [1 ]
Bao, Han [1 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiplier-free implementation; Improved FitzHugh-Nagumo neuron model; Nonlinearity; Electrical activity; Hardware experiment; BIFURCATIONS; NETWORK; NERVE; NOISE; EXCITATION; RESONANCE; DRIVEN; CHAOS;
D O I
10.1007/s11071-023-08274-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The cubic-polynomial nonlinearity with N-shaped curve plays a crucial role in generating abundant electrical activities for the original FitzHugh-Nagumo (FHN) neuron model. The pioneer FHN neuron model is efficient in theoretical analysis and numerical simulation for these abundant electrical activities, but analog multipliers are indispensable in hardware implementation since the involvement of cubic-polynomial nonlinearity. Analog multiplier goes against the circuit integration of FHN neuron model due to its huge implementation costs. To avoid the involvement of analog multiplier in hardware implementation, a nonlinear function possessing N-shaped curve and multiplier-free implementation is presented in this paper. To confirm the availability of this nonlinear function in generating electrical activities, numerical simulations and hardware experiments are successfully executed on an improved two-dimensional (2D) FHN neuron model with externally applied stimulus. The results demonstrate that the improved FHN neuron model can generate rich electrical activities of periodic spiking behavior, chaotic behavior, and quasi-periodic behavior. Analog circuit implementation without any multiplier and its hardware experiment show the availability of the proposed nonlinear function, which is appropriate for analog circuit implementation of FHN neuron-based neuromorphic intelligence.
引用
收藏
页码:8737 / 8749
页数:13
相关论文
共 50 条
  • [41] Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model
    Alidousti J.
    Ghaziani R.K.
    Mathematical Models and Computer Simulations, 2017, 9 (3) : 390 - 403
  • [42] Parameters Analysis of FitzHugh-Nagumo Model for a Reliable Simulation
    Xu, B.
    Binczak, S.
    Jacquir, S.
    Pont, O.
    Yahia, H.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4334 - 4337
  • [43] Implementation of compact VLSI FitzHugh-Nagumo neurons
    Cosp, Jordi
    Binczak, Stephane
    Madrenas, Jordi
    Fernandez, Daniel
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 2370 - +
  • [44] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [45] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [46] Input signal accumulation capability of the FitzHugh-Nagumo neuron
    Bukh, A. V.
    Shepelev, I. A.
    Vadivasova, T. E.
    CHAOS, 2024, 34 (12)
  • [47] Pattern formation in the Fitzhugh-Nagumo neuron with diffusion relaxation
    Tah, Forwah Amstrong
    Tabi, Conrad Bertrand
    Kofane, Timoleon Crepin
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [48] Nonstandard Nearly Exact Analysis of the FitzHugh-Nagumo Model
    Shahid
    Abbas, Mujahid
    Kwessi, Eddy
    SYMMETRY-BASEL, 2024, 16 (05):
  • [49] Microscopic model for FitzHugh-Nagumo dynamics
    Malevanets, A
    Kapral, R
    PHYSICAL REVIEW E, 1997, 55 (05): : 5657 - 5670
  • [50] Dynamical behaviors in the FitzHugh-Nagumo system with a memory trace
    Yuan, Guoyong
    Liu, Jun
    Wang, Shuijing
    Yang, Shiping
    Wang, Guangrui
    Zhang, Hongmei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (25):