Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia

被引:4
|
作者
Tabacchi, Gloria [1 ,2 ]
Armenia, Ilaria [3 ]
Bernardini, Giovanni [4 ]
Masciocchi, Norberto [1 ,2 ]
Guagliardi, Antonietta [5 ,6 ]
Fois, Ettore [1 ,2 ]
机构
[1] Univ Insubria & INSTM, Dipartimento Sci & Alta Tecnol DSAT, I-22100 Como, Italy
[2] INSTM, I-22100 Como, Italy
[3] CSIC Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, Inst Nanociencia & Mat Aragon INMA, Zaragoza 50009, Spain
[4] Univ Insubria, Dipartimento Biotecnol & Sci DBSV, I-21100 Varese, Italy
[5] Ist Cristallog To Sca Lab, To Sca Lab, I-22100 Como, Italy
[6] CNR, INSTM, I-22100 Como, Italy
基金
欧盟地平线“2020”;
关键词
magnetic iron oxide; magnetic nanoparticlehyperthermia; density functional calculations; X-raydiffraction; nanoparticles; MOLECULAR-DYNAMICS; AB-INITIO; TOXICITY; ZEOLITE; RELEASE; SYSTEMS;
D O I
10.1021/acsanm.3c01643
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic iron oxidenanoparticles (IONPs) have gainedmomentumin the field of biomedical applications. They can be remotely heatedvia alternating magnetic fields, and such heat can be transferredfrom the IONPs to the local environment. However, the microscopicmechanism of heat transfer is still debated. By X-ray total scatteringexperiments and first-principles simulations, we show how such heattransfer can occur. After establishing structural and microstructuralproperties of the maghemite phase of the IONPs, we built a maghemitemodel functionalized with aminoalkoxysilane, a molecule used to anchor(bio)molecules to oxide surfaces. By a linear response theory approach,we reveal that a resonance mechanism is responsible for the heat transferfrom the IONPs to the surroundings. Heat transfer occurs not onlyvia covalent linkages with the IONP but also through the solvent hydrogen-bondnetwork. This result may pave the way to exploit the directional controlof the heat flow from the IONPs to the anchored molecules i.e.,antibiotics, therapeutics, and enzymes for their activationor release in a broader range of medical and industrial applications.
引用
收藏
页码:12914 / 12921
页数:8
相关论文
共 50 条
  • [31] Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia
    Dias, Alexandre M. M.
    Courteau, Alan
    Bellaye, Pierre-Simon
    Kohli, Evelyne
    Oudot, Alexandra
    Doulain, Pierre-Emmanuel
    Petitot, Camille
    Walker, Paul-Michael
    Decreau, Richard
    Collin, Bertrand
    PHARMACEUTICS, 2022, 14 (11)
  • [32] Plant-derived Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia and Magnetic Resonance Imaging Applications
    Mohamed Abdelmonem
    Romesa Soomro
    Norazalina Saad
    Mohamed Ahmed Ibrahim
    Kim Wei Chan
    Emmellie Laura Albert
    Emma Ziezie Tarmizie
    Che Azurahanim Che Abdullah
    Nano Biomedicine and Engineering, 2025, 17 (01) : 74 - 90
  • [33] Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications
    Armijo, Leisha M.
    Brandt, Yekaterina I.
    Mathew, Dimple
    Yadav, Surabhi
    Maestas, Salomon
    Rivera, Antonio C.
    Cook, Nathaniel C.
    Withers, Nathan J.
    Smolyakov, Gennady A.
    Adolphi, Natalie L.
    Monson, Todd C.
    Huber, Dale L.
    Smyth, Hugh D. C.
    Osinski, Marek
    NANOMATERIALS, 2012, 2 (02) : 134 - 146
  • [34] Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content
    Wabler, Michele
    Zhu, Wenlian
    Hedayati, Mohammad
    Attaluri, Anilchandra
    Zhou, Haoming
    Mihalic, Jana
    Geyh, Alison
    DeWeese, Theodore L.
    Ivkov, Robert
    Artemov, Dmitri
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2014, 30 (03) : 192 - 200
  • [35] Iron Nanoparticles Fabricated by High-Energy Ball Milling for Magnetic Hyperthermia
    D. K. Tung
    D. H. Manh
    L. T. H. Phong
    P. H. Nam
    D. N. H. Nam
    N. T. N. Anh
    H. T. T. Nong
    M. H. Phan
    N. X. Phuc
    Journal of Electronic Materials, 2016, 45 : 2644 - 2650
  • [36] Iron Nanoparticles Fabricated by High-Energy Ball Milling for Magnetic Hyperthermia
    Tung, D. K.
    Manh, D. H.
    Phong, L. T. H.
    Nam, P. H.
    Nam, D. N. H.
    Anh, N. T. N.
    Nong, H. T. T.
    Phan, M. H.
    Phuc, N. X.
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (05) : 2644 - 2650
  • [37] Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Carlos Martinez-Boubeta
    Konstantinos Simeonidis
    Antonios Makridis
    Makis Angelakeris
    Oscar Iglesias
    Pablo Guardia
    Andreu Cabot
    Lluis Yedra
    Sonia Estradé
    Francesca Peiró
    Zineb Saghi
    Paul A. Midgley
    Iván Conde-Leborán
    David Serantes
    Daniel Baldomir
    Scientific Reports, 3
  • [38] Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Martinez-Boubeta, Carlos
    Simeonidis, Konstantinos
    Makridis, Antonios
    Angelakeris, Makis
    Iglesias, Oscar
    Guardia, Pablo
    Cabot, Andreu
    Yedra, Lluis
    Estrade, Sonia
    Peiro, Francesca
    Saghi, Zineb
    Midgley, Paul A.
    Conde-Leboran, Ivan
    Serantes, David
    Baldomir, Daniel
    SCIENTIFIC REPORTS, 2013, 3
  • [39] Monocore vs. multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia
    Hemery, Gauvin
    Genevois, Coralie
    Couillaud, Franck
    Lacomme, Sabrina
    Gontier, Etienne
    Ibarboure, Emmanuel
    Lecommandoux, Sebastien
    Garanger, Elisabeth
    Sandre, Olivier
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2017, 2 (05): : 629 - 639
  • [40] Evaluating magnetic and thermal effects of various Polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia
    El-Boubbou, Kheireddine
    Lemine, O. M.
    Ali, Rizwan
    Huwaizi, Sarah M.
    Al-Humaid, Sulaiman
    AlKushi, Abdulmohsen
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (12) : 5489 - 5504