Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia

被引:4
|
作者
Tabacchi, Gloria [1 ,2 ]
Armenia, Ilaria [3 ]
Bernardini, Giovanni [4 ]
Masciocchi, Norberto [1 ,2 ]
Guagliardi, Antonietta [5 ,6 ]
Fois, Ettore [1 ,2 ]
机构
[1] Univ Insubria & INSTM, Dipartimento Sci & Alta Tecnol DSAT, I-22100 Como, Italy
[2] INSTM, I-22100 Como, Italy
[3] CSIC Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, Inst Nanociencia & Mat Aragon INMA, Zaragoza 50009, Spain
[4] Univ Insubria, Dipartimento Biotecnol & Sci DBSV, I-21100 Varese, Italy
[5] Ist Cristallog To Sca Lab, To Sca Lab, I-22100 Como, Italy
[6] CNR, INSTM, I-22100 Como, Italy
基金
欧盟地平线“2020”;
关键词
magnetic iron oxide; magnetic nanoparticlehyperthermia; density functional calculations; X-raydiffraction; nanoparticles; MOLECULAR-DYNAMICS; AB-INITIO; TOXICITY; ZEOLITE; RELEASE; SYSTEMS;
D O I
10.1021/acsanm.3c01643
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic iron oxidenanoparticles (IONPs) have gainedmomentumin the field of biomedical applications. They can be remotely heatedvia alternating magnetic fields, and such heat can be transferredfrom the IONPs to the local environment. However, the microscopicmechanism of heat transfer is still debated. By X-ray total scatteringexperiments and first-principles simulations, we show how such heattransfer can occur. After establishing structural and microstructuralproperties of the maghemite phase of the IONPs, we built a maghemitemodel functionalized with aminoalkoxysilane, a molecule used to anchor(bio)molecules to oxide surfaces. By a linear response theory approach,we reveal that a resonance mechanism is responsible for the heat transferfrom the IONPs to the surroundings. Heat transfer occurs not onlyvia covalent linkages with the IONP but also through the solvent hydrogen-bondnetwork. This result may pave the way to exploit the directional controlof the heat flow from the IONPs to the anchored molecules i.e.,antibiotics, therapeutics, and enzymes for their activationor release in a broader range of medical and industrial applications.
引用
收藏
页码:12914 / 12921
页数:8
相关论文
共 50 条
  • [21] Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia
    Salunkhe, Ashwini B.
    Khot, Vishwajeet M.
    Ruso, Juan M.
    Patil, S. I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 419 : 533 - 542
  • [22] Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance
    Sagar A. Patil
    Tanjila C. Gavandi
    Maithili V. Londhe
    Ashwini B. Salunkhe
    Ashwini K. Jadhav
    Vishwajeet M. Khot
    Journal of Cluster Science, 2024, 35 : 1405 - 1415
  • [23] A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study
    Sivasai Balivada
    Raja Shekar Rachakatla
    Hongwang Wang
    Thilani N Samarakoon
    Raj Kumar Dani
    Marla Pyle
    Franklin O Kroh
    Brandon Walker
    Xiaoxuan Leaym
    Olga B Koper
    Masaaki Tamura
    Viktor Chikan
    Stefan H Bossmann
    Deryl L Troyer
    BMC Cancer, 10
  • [24] A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study
    Balivada, Sivasai
    Rachakatla, Raja Shekar
    Wang, Hongwang
    Samarakoon, Thilani N.
    Dani, Raj Kumar
    Pyle, Marla
    Kroh, Franklin O.
    Walker, Brandon
    Leaym, Xiaoxuan
    Koper, Olga B.
    Tamura, Masaaki
    Chikan, Viktor
    Bossmann, Stefan H.
    Troyer, Deryl L.
    BMC CANCER, 2010, 10
  • [25] Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia
    Thomas, Luanne A.
    Dekker, Linda
    Kallumadil, Mathew
    Southern, Paul
    Wilson, Michael
    Nair, Sean P.
    Pankhurst, Quentin A.
    Parkin, Ivan P.
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (36) : 6529 - 6535
  • [26] RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia
    Zheng, S. W.
    Huang, M.
    Hong, R. Y.
    Deng, S. M.
    Cheng, L. F.
    Gao, B.
    Badami, D.
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2014, 28 (07) : 1051 - 1059
  • [27] Magnetic Relaxation of Agglomerated and Immobilized Iron Oxide Nanoparticles for Hyperthermia and Imaging Applications
    Engelmann, Ulrich Michael
    Buhl, Eva Miriam
    Draack, Sebastian
    Viereck, Thilo
    Ludwig, Frank
    Schmitz-Rode, Thomas
    Slabu, Ioana
    IEEE MAGNETICS LETTERS, 2018, 9
  • [28] Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance
    Patil, Sagar A.
    Gavandi, Tanjila C.
    Londhe, Maithili V.
    Salunkhe, Ashwini B.
    Jadhav, Ashwini K.
    Khot, Vishwajeet M.
    JOURNAL OF CLUSTER SCIENCE, 2024, 35 (05) : 1405 - 1415
  • [29] Enhancing the magnetic properties of superparamagnetic iron oxide nanoparticles using hydrothermal treatment for magnetic hyperthermia application
    Martins, Carla
    Rolo, Catarina
    Cacho, Vanessa R. G.
    Pereira, Laura C. J.
    Borges, Joao Paulo
    Silva, Jorge Carvalho
    Vieira, Tania
    Soares, Paula I. P.
    MATERIALS ADVANCES, 2025, 6 (05): : 1726 - 1743
  • [30] Carbothermal treated iron oxide nanoparticles with improving magnetic heating efficiency for hyperthermia
    Zuo, Xudong
    Ding, Hao
    Zhang, Jiandong
    Fang, Tao
    Zhang, Dongmei
    RESULTS IN PHYSICS, 2022, 32