DeePhys: A machine learning-assisted platform for electrophysiological phenotyping of human neuronal networks

被引:1
|
作者
Hornauer, Philipp [1 ]
Prack, Gustavo [1 ]
Anastasi, Nadia [2 ]
Ronchi, Silvia [1 ]
Kim, Taehoon [1 ]
Donner, Christian [3 ]
Fiscella, Michele [1 ,4 ]
Borgwardt, Karsten [1 ,5 ]
Jagasia, Ravi [2 ]
Taylor, Verdon [6 ]
Roqueiro, Damian [1 ,2 ]
Hierlemann, Andreas [1 ]
Schroter, Manuel [1 ]
机构
[1] Dept Biosyst Sci & Engn, ETH Zurich, CH-4058 Basel, Switzerland
[2] Roche Innovat Ctr Basel, Roche Pharm Res & Early Dev, Neurosci & Rare Dis, CH-4070 Basel, Switzerland
[3] Swiss Data Sci Ctr, ETH Zurich, CH-8092 Zurich, Switzerland
[4] MaxWell Biosyst AG, CH-8047 Zurich, Switzerland
[5] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[6] Univ Basel, Dept Biomed, CH-4058 Basel, Switzerland
来源
STEM CELL REPORTS | 2024年 / 19卷 / 02期
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ALPHA-SYNUCLEIN; FRAMEWORK; MUTATION;
D O I
10.1016/j.stemcr.2023.12.008
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Reproducible functional assays to study in vitro neuronal networks represent an important cornerstone in the quest to develop physiologically relevant cellular models of human diseases. Here, we introduce DeePhys, a MATLAB-based analysis tool for data -driven functional phenotyping of in vitro neuronal cultures recorded by high -density microelectrode arrays. DeePhys is a modular workflow that offers a range of techniques to extract features from spike -sorted data, allowing for the examination of functional phenotypes both at the individual cell and network levels, as well as across development. In addition, DeePhys incorporates the capability to integrate novel features and to use machine -learning -assisted approaches, which facilitates a comprehensive evaluation of pharmacological interventions. To illustrate its practical application, we apply DeePhys to human induced pluripotent stem cell-derived dopaminergic neurons obtained from both patients and healthy individuals and showcase how DeePhys enables phenotypic screenings.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 50 条
  • [41] Machine Learning-Assisted Beam Alignment for mmWave Systems
    Heng, Yuqiang
    Andrews, Jeffrey G.
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (04) : 1142 - 1155
  • [42] Machine Learning-Assisted Beam Alignment for mmWave Systems
    Heng, Yuqiang
    Andrews, Jeffrey G.
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [43] Machine learning-assisted smartphone-based fluorescence visual sensing platform for ultrasensitive detection of chlortetracycline
    Long, Wanjun
    Lu, Huanhuan
    Han, Yulong
    Chen, Hengye
    Lan, Wei
    She, Yuanbin
    Fu, Haiyan
    SENSORS AND ACTUATORS B-CHEMICAL, 2025, 428
  • [44] Exploring Antiviral Drugs on Monolayer Black Phosphorene: Atomistic Theory and Explainable Machine Learning-Assisted Platform
    Laref, Slimane
    Harrou, Fouzi
    Sun, Ying
    Gao, Xin
    Gojobori, Takashi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (09)
  • [45] Learning-assisted Beam Search for Indoor mmWave Networks
    Chen, Yu-Jia
    Cheng, Wei-Yuan
    Wang, Li-Chun
    2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2018, : 320 - 325
  • [46] Machine Learning-Assisted Microfluidic Synthesis of Perovskite Quantum Dots
    Chen, Gaoyu
    Zhu, Xia
    Xing, Chenyu
    Wang, Yongkai
    Xu, Xiangxing
    Bao, Jianchun
    Huang, Jinghan
    Zhao, Yurong
    Wang, Xuan
    Zhou, Xiuqing
    Du, Xiuli
    Wang, Xun
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (01):
  • [47] Machine learning-assisted macro simulation for yard arrival prediction
    Minbashi, Niloofar
    Sipila, Hans
    Palmqvist, Carl -William
    Bohlin, Markus
    Kordnejad, Behzad
    JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2023, 25
  • [48] Machine Learning-assisted GNSS Interference Monitoring through Crowdsourcing
    Raichur, Nisha Lakshmana
    Brieger, Tobias
    Jdidi, Dorsaf
    Feigl, Tobias
    van der Merwe, J. Rossouw
    Ghimire, Birendra
    Ott, Felix
    Rügamer, Alexander
    Felber, Wolfgang
    35th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2022, 2022, 2 : 1119 - 1143
  • [49] Uncertainty as a Predictor of Classification Accuracy in Machine Learning-Assisted Measurements
    Shirmohammadi, Shervin
    Amiri, Mohammad Hadi
    Al Osman, Hussein
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2024, 27 (07) : 37 - 45
  • [50] Machine Learning-Assisted Man Overboard Detection Using Radars
    Tsekenis, Vasileios
    Armeniakos, Charalampos K.
    Nikolaidis, Viktor
    Bithas, Petros S.
    Kanatas, Athanasios G.
    ELECTRONICS, 2021, 10 (11)