Exploring Antiviral Drugs on Monolayer Black Phosphorene: Atomistic Theory and Explainable Machine Learning-Assisted Platform

被引:0
|
作者
Laref, Slimane [1 ]
Harrou, Fouzi [2 ]
Sun, Ying [2 ]
Gao, Xin [1 ]
Gojobori, Takashi [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi Arabia
关键词
ensemble learning; DFT; inhibitor; black phosphorus; thermodynamic; molecular states; drug vehicles; TOTAL-ENERGY CALCULATIONS; GRAPHENE;
D O I
10.3390/ijms25094897
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.
引用
收藏
页数:25
相关论文
共 24 条
  • [1] Atomistic-Informed and Machine Learning-Assisted Crystal Plasticity Modeling for Material Interfaces
    Altarabsheh, Ibrahim
    Chen, Xiang
    JOURNAL OF ENGINEERING MECHANICS, 2025, 151 (01)
  • [2] DeePhys: A machine learning-assisted platform for electrophysiological phenotyping of human neuronal networks
    Hornauer, Philipp
    Prack, Gustavo
    Anastasi, Nadia
    Ronchi, Silvia
    Kim, Taehoon
    Donner, Christian
    Fiscella, Michele
    Borgwardt, Karsten
    Jagasia, Ravi
    Taylor, Verdon
    Roqueiro, Damian
    Hierlemann, Andreas
    Schroter, Manuel
    STEM CELL REPORTS, 2024, 19 (02): : 285 - 298
  • [3] The efficiency of machine learning-assisted platform for article screening in systematic reviews in orthopaedics
    Sathish Muthu
    International Orthopaedics, 2023, 47 : 551 - 556
  • [5] Exploring explainable AI: category theory insights into machine learning algorithms
    Fabregat-Hernandez, Ares
    Palanca, Javier
    Botti, Vicent
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [6] Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform
    Sturm, Alexander
    Jozwiak, Grzegorz
    Verge, Marta Pla
    Munch, Laura
    Cathomen, Gino
    Vocat, Anthony
    Luraschi-Eggemann, Amanda
    Orlando, Clara
    Fromm, Katja
    Delarze, Eric
    Swiatkowski, Michal
    Wielgoszewski, Grzegorz
    Totu, Roxana M.
    Garcia-Castillo, Maria
    Delfino, Alexandre
    Tagini, Florian
    Kasas, Sandor
    Lass-Florl, Cornelia
    Gstir, Ronald
    Canton, Rafael
    Greub, Gilbert
    Cichocka, Danuta
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [7] Blood Biomarkers Panels for Screening of Colorectal Cancer and Adenoma on a Machine Learning-Assisted Detection Platform
    Wang, Hui
    Zhou, Zhiwei
    Li, Haijun
    Xiang, Weiguang
    Lan, Yilin
    Dou, Xiaowen
    Zhang, Xiuming
    CANCER CONTROL, 2023, 30
  • [8] Atomistic Origin of Microsecond Carrier Lifetimes at Perovskite Grain Boundaries: Machine Learning-Assisted Nonadiabatic Molecular Dynamics
    Wu, Yifan
    Chu, Weibin
    Wang, Bipeng
    Prezhdo, Oleg V.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (06) : 5449 - 5458
  • [9] Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform
    Alexander Sturm
    Grzegorz Jóźwiak
    Marta Pla Verge
    Laura Munch
    Gino Cathomen
    Anthony Vocat
    Amanda Luraschi-Eggemann
    Clara Orlando
    Katja Fromm
    Eric Delarze
    Michał Świątkowski
    Grzegorz Wielgoszewski
    Roxana M. Totu
    María García-Castillo
    Alexandre Delfino
    Florian Tagini
    Sandor Kasas
    Cornelia Lass-Flörl
    Ronald Gstir
    Rafael Cantón
    Gilbert Greub
    Danuta Cichocka
    Nature Communications, 15
  • [10] Explainable machine learning-assisted origin identification: Chemical profiling of five lotus (Nelumbo nucifera Gaertn.) parts
    Huang, Jingxian
    Li, Zhen
    Zhang, Wei
    Lv, Zhuoyuan
    Dong, Shuying
    Feng, Yan
    Liu, Rongxia
    Zhao, Yan
    FOOD CHEMISTRY, 2023, 404