The KAM theorem on the modulus of continuity about parameters

被引:4
|
作者
Tong, Zhicheng [1 ]
Du, Jiayin [1 ]
Li, Yong [2 ,3 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[3] Northeast Normal Univ, Sch Math & Stat, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian systems; invariant tori; frequency-preserving; weak regularity; INVARIANT TORI; HAMILTONIAN-SYSTEMS; PERSISTENCE;
D O I
10.1007/s11425-022-2102-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Hamiltonian systems H(y, x, xi, epsilon) = <omega(xi),y >+epsilon P(y, x, xi, epsilon), where omega and P are continuous about xi. We prove that persistent invariant tori possess the same frequency as the unperturbed tori, under a certain transversality condition and a weak convexity condition for the frequency mapping omega. As a direct application, we prove a Kolmogorov-Arnold-Moser (KAM) theorem when the perturbation P holds arbitrary Holder continuity with respect to the parameter xi. The infinite-dimensional case is also considered. To our knowledge, this is the first approach to the systems with the only continuity in the parameter beyond Holder's type.
引用
收藏
页码:577 / 592
页数:16
相关论文
共 50 条