The KAM theorem on the modulus of continuity about parameters

被引:4
|
作者
Tong, Zhicheng [1 ]
Du, Jiayin [1 ]
Li, Yong [2 ,3 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[3] Northeast Normal Univ, Sch Math & Stat, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian systems; invariant tori; frequency-preserving; weak regularity; INVARIANT TORI; HAMILTONIAN-SYSTEMS; PERSISTENCE;
D O I
10.1007/s11425-022-2102-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Hamiltonian systems H(y, x, xi, epsilon) = <omega(xi),y >+epsilon P(y, x, xi, epsilon), where omega and P are continuous about xi. We prove that persistent invariant tori possess the same frequency as the unperturbed tori, under a certain transversality condition and a weak convexity condition for the frequency mapping omega. As a direct application, we prove a Kolmogorov-Arnold-Moser (KAM) theorem when the perturbation P holds arbitrary Holder continuity with respect to the parameter xi. The infinite-dimensional case is also considered. To our knowledge, this is the first approach to the systems with the only continuity in the parameter beyond Holder's type.
引用
收藏
页码:577 / 592
页数:16
相关论文
共 50 条
  • [21] KAM theorem and quantum field theory
    Bricmont, J
    Gawedzki, K
    Kupiainen, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) : 699 - 727
  • [22] Multiscale KAM theorem for Hamiltonian systems
    Qian, Weichao
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 70 - 86
  • [23] KAM theorem for the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 133 - 138
  • [24] AN APPLICATION OF KAM THEOREM OF REVERSIBLE SYSTEMS
    柳彬
    ScienceinChina,SerA., 1991, Ser.A.1991 (09) : 1068 - 1078
  • [25] KAM Theorem and Quantum Field Theory
    Jean Bricmont
    Krzysztof Gawędzki
    Antti Kupiainen
    Communications in Mathematical Physics, 1999, 201 : 699 - 727
  • [26] AN APPLICATION OF KAM THEOREM OF REVERSIBLE SYSTEMS
    柳彬
    Science China Mathematics, 1991, (09) : 1068 - 1078
  • [27] THE MODULUS OF CONTINUITY IN LP
    IVANOV, VI
    MATHEMATICAL NOTES, 1987, 41 (5-6) : 382 - 385
  • [28] INTEGRAL MODULUS OF CONTINUITY
    TEMIRGAL.N
    ULYANNOV, PL
    ACTA SCIENTIARUM MATHEMATICARUM, 1974, 36 (1-2): : 173 - 180
  • [29] CONTINUOUS MODULUS OF CONTINUITY
    SEIDMAN, SB
    CHILDRESS, JA
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03): : 253 - 254
  • [30] A CONTINUOUS MODULUS OF CONTINUITY
    GUTHRIE, JA
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (02): : 126 - 127