Microbial production of cis,cis-muconic acid from aromatic compounds in engineered Pseudomonas

被引:3
|
作者
He, Siyang [1 ,2 ]
Wang, Weiwei [1 ,2 ]
Wang, Weidong [3 ]
Hu, Haiyang [1 ,2 ]
Xu, Ping [1 ,2 ]
Tang, Hongzhi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
[3] Northeast Forestry Univ, Coll Life Sci, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Biodegradation; Polycyclic aromatic hydrocarbons; Biological funneling; cis; cis -muconic acid; Pseudomonas; METABOLISM; PATHWAY; DEGRADATION; POLLUTANTS; BENZOATE; LIGNIN;
D O I
10.1016/j.synbio.2023.08.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Industrial expansion has led to environmental pollution by xenobiotic compounds like polycyclic aromatic hydrocarbons and monoaromatic hydrocarbons. Pseudomonas spp. have broad metabolic potential for degrading aromatic compounds. The objective of this study was to develop a "biological funneling" strategy based on genetic modification to convert complex aromatic compounds into cis,cis-muconate (ccMA) using Pseudomonas putida B6-2 and P. brassicacearum MPDS as biocatalysts. The engineered strains B6-2 (B6-2 & UDelta;catB & UDelta;salC) and MPDS (MPDS & UDelta;salC(pUCP18k-catA)) thrived with biphenyl or naphthalene as the sole carbon source and produced ccMA, attaining molar conversions of 95.3% (ccMA/biphenyl) and 100% (ccMA/naphthalene). Under mixed substrates, B6-2 & UDelta;catB & UDelta;salC grew on biphenyl as a carbon source and transformed ccMA from non-growth substrates benzoate or salicylate to obtain higher product concentration. Inserting exogenous clusters like bedDC1C2AB and xylCMAB allowed B6-2 recombinant strains to convert benzene and toluene to ccMA. In mixed substrates, constructed consortia of engineered strains B6-2 and MPDS specialized in catabolism of biphenyl and naphthalene; the highest molar conversion rate of ccMA from mixed substrates was 85.2% when B6-2 & UDelta;catB & UDelta;salC was added after 24 h of MPDS & UDelta;salC(pUCP18k-catA) incubation with biphenyl and naphthalene. This study provides worthwhile insights into efficient production of ccMA from aromatic hydrocarbons by reusing complex pollutants.
引用
收藏
页码:536 / 545
页数:10
相关论文
共 50 条
  • [41] Recombinant xylose-fermenting yeast construction for the co-production of ethanol and cis,cis-muconic acid from lignocellulosic biomass
    Liu T.
    Peng B.
    Huang S.
    Geng A.
    Bioresource Technology Reports, 2020, 9
  • [42] Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range
    Scelfo, S.
    Pirone, R.
    Russo, N.
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 222 : 823 - 827
  • [43] Glucose-Free cis,cis-Muconic Acid Production via New Metabolic Designs Corresponding to the Heterogeneity of Lignin
    Sonoki, Tomonori
    Takahashi, Kenji
    Sugita, Haruka
    Hatamura, Minami
    Azuma, Yuta
    Sato, Takumi
    Suzuki, Sachio
    Kamimura, Naofumi
    Masai, Eiji
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01): : 1256 - 1264
  • [44] ENZYMIC-LIKE AROMATIC OXIDATIONS - METAL-CATALYZED PERACETIC-ACID OXIDATION OF PHENOL AND CATECHOL TO CIS,CIS-MUCONIC ACID
    PANDELL, AJ
    JOURNAL OF ORGANIC CHEMISTRY, 1976, 41 (25): : 3992 - 3996
  • [45] Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116
    Barton, Nadja
    Horbal, Liliya
    Starck, Soeren
    Kohlstedt, Michael
    Luzhetskyy, Andriy
    Wittmann, Christoph
    METABOLIC ENGINEERING, 2018, 45 : 200 - 210
  • [46] ENZYMATIC FORMATION OF A CIS,CIS-MUCONIC ACID-DERIVATIVE USING PYRAZON-DEGRADING BACTERIA
    BLOBEL, F
    EBERSPACHER, J
    HAUG, S
    LINGENS, F
    ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1976, 31 (11-1): : 756 - 756
  • [47] Comments on "Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range"
    Carraher, Jack M.
    Matthiesen, John E.
    Tessonnier, Jean-Philippe
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 224 : 420 - 422
  • [48] Engineering Pseudomonas putida for lignin bioconversion into cis-cis muconic acid
    Liu, He
    Tao, Xu
    Ntakirutimana, Samuel
    Liu, Zhi-Hua
    Li, Bing-Zhi
    Yuan, Ying-Jin
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [49] Electrochemical hydrogenation of bioprivileged cis,cis-muconic acid to trans-3-hexenedioic acid: from lab synthesis to bench-scale production and beyond
    Dell'Anna, Marco Nazareno
    Laureano, Mathew
    Bateni, Hamed
    Matthiesen, John E.
    Zaza, Ludovic
    Zembrzuski, Michael P.
    Paskach, Thomas J.
    Tessonnier, Jean-Philippe
    GREEN CHEMISTRY, 2021, 23 (17) : 6456 - 6468
  • [50] Whole-Cell Bioconversion of Renewable Biomasses-Related Aromatics to cis,cis-Muconic Acid
    Molinari, Filippo
    Pollegioni, Loredano
    Rosini, Elena
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (06) : 2476 - 2485