Microbial production of cis,cis-muconic acid from aromatic compounds in engineered Pseudomonas

被引:3
|
作者
He, Siyang [1 ,2 ]
Wang, Weiwei [1 ,2 ]
Wang, Weidong [3 ]
Hu, Haiyang [1 ,2 ]
Xu, Ping [1 ,2 ]
Tang, Hongzhi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
[3] Northeast Forestry Univ, Coll Life Sci, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Biodegradation; Polycyclic aromatic hydrocarbons; Biological funneling; cis; cis -muconic acid; Pseudomonas; METABOLISM; PATHWAY; DEGRADATION; POLLUTANTS; BENZOATE; LIGNIN;
D O I
10.1016/j.synbio.2023.08.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Industrial expansion has led to environmental pollution by xenobiotic compounds like polycyclic aromatic hydrocarbons and monoaromatic hydrocarbons. Pseudomonas spp. have broad metabolic potential for degrading aromatic compounds. The objective of this study was to develop a "biological funneling" strategy based on genetic modification to convert complex aromatic compounds into cis,cis-muconate (ccMA) using Pseudomonas putida B6-2 and P. brassicacearum MPDS as biocatalysts. The engineered strains B6-2 (B6-2 & UDelta;catB & UDelta;salC) and MPDS (MPDS & UDelta;salC(pUCP18k-catA)) thrived with biphenyl or naphthalene as the sole carbon source and produced ccMA, attaining molar conversions of 95.3% (ccMA/biphenyl) and 100% (ccMA/naphthalene). Under mixed substrates, B6-2 & UDelta;catB & UDelta;salC grew on biphenyl as a carbon source and transformed ccMA from non-growth substrates benzoate or salicylate to obtain higher product concentration. Inserting exogenous clusters like bedDC1C2AB and xylCMAB allowed B6-2 recombinant strains to convert benzene and toluene to ccMA. In mixed substrates, constructed consortia of engineered strains B6-2 and MPDS specialized in catabolism of biphenyl and naphthalene; the highest molar conversion rate of ccMA from mixed substrates was 85.2% when B6-2 & UDelta;catB & UDelta;salC was added after 24 h of MPDS & UDelta;salC(pUCP18k-catA) incubation with biphenyl and naphthalene. This study provides worthwhile insights into efficient production of ccMA from aromatic hydrocarbons by reusing complex pollutants.
引用
收藏
页码:536 / 545
页数:10
相关论文
共 50 条
  • [21] Highly efficient catalysts for the synthesis of adipic acid from cis,cis-muconic acid
    Scelfo, S.
    Pirone, R.
    Russo, N.
    CATALYSIS COMMUNICATIONS, 2016, 84 : 98 - 102
  • [22] Bio-based production of cis,cis-muconic acid as platform for a sustainable polymers production
    Molinari, Filippo
    Salini, Andrea
    Vittore, Aniello
    Santoro, Orlando
    Izzo, Lorella
    Fusco, Salvatore
    Pollegioni, Loredano
    Rosini, Elena
    BIORESOURCE TECHNOLOGY, 2024, 408
  • [23] Microbial synthesis of cis,cis-muconic acid by Sphingobacterium sp GCG generated from effluent of a styrene monomer (SM) production plant
    Wu, CM
    Lee, TH
    Lee, SN
    Lee, YA
    Wu, JY
    ENZYME AND MICROBIAL TECHNOLOGY, 2004, 35 (6-7) : 598 - 604
  • [24] High-yield Production of cis,cis-Muconic Acid from Catechol in Aqueous Solution by Biocatalyst
    Kaneko, Aya
    Ishii, Yoshitaka
    Kirimura, Kohtaro
    CHEMISTRY LETTERS, 2011, 40 (04) : 381 - 383
  • [25] Biosynthesis of cis,cis-Muconic Acid and Its Aromatic Precursors, Catechol and Protocatechuic Acid, from Renewable Feedstocks by Saccharomyces cerevisiae
    Weber, Christian
    Brueckner, Christine
    Weinreb, Sheila
    Lehr, Claudia
    Essl, Christine
    Boles, Eckhard
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (23) : 8421 - 8430
  • [26] Biosensors for the detection of chorismate and cis,cis-muconic acid in Corynebacterium glutamicum
    Velasquez-Guzman, Jeanette C.
    Huttanus, Herbert M.
    Morales, Demosthenes P.
    Werner, Tara S.
    Carroll, Austin L.
    Guss, Adam M.
    Yeager, Chris M.
    Dale, Taraka
    Jha, Ramesh K.
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2024, 51
  • [27] Recovery of cis,cis-muconic acid from organic phase after reactive extraction
    Gorden, Jannick
    Zeiner, Tim
    Sadowski, Gabriele
    Brandenbusch, Christoph
    SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 169 : 1 - 8
  • [28] Engineering Novosphingobium aromaticivorans to produce cis,cis-muconic acid from biomass aromatics
    Vilbert, Avery C.
    Kontur, Wayne S.
    Gille, Derek
    Noguera, Daniel R.
    Donohue, Timothy J.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2024, 90 (01)
  • [29] Characterization of a non-phosphotransferase system for cis,cis-muconic acid production in Corynebacterium glutamicum
    Shin, Woo-Shik
    Lee, Dohoon
    Lee, Sang Joung
    Chun, Gie-Taek
    Choi, Si-Sun
    Kim, Eung-Soo
    Kim, Sangyong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 499 (02) : 279 - 284
  • [30] Structure sensitivity of the electrochemical hydrogenation of cis,cis-muconic acid to hexenedioic acid and adipic acid
    Patel, Deep M.
    Prabhu, Prathamesh T.
    Gupta, Geet
    Dell'Anna, Marco Nazareno
    Kling, Samantha
    Nguyen, Huy T.
    Tessonnier, Jean-Philippe
    Roling, Luke T.
    GREEN CHEMISTRY, 2024, 26 (08) : 4506 - 4517