Hot Ductility Evolution Mechanism of Titanium-Bearing Microalloyed Steels

被引:1
|
作者
Liu, Peng [1 ,2 ]
Zheng, Wan [1 ,2 ]
Li, Guangqiang [1 ,2 ]
Zhang, Huirong [1 ,2 ]
Zhang, Wenwen [1 ,2 ]
Wang, Chunfeng [3 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Key Lab Ferrous Met & Resources Utilizat, Minist Educ, Wuhan 430081, Peoples R China
[3] Baosteel Wuhan Iron & Steel Co Ltd, CSP Hot Rolling Sheet Plant, Wuhan 430083, Peoples R China
基金
中国国家自然科学基金;
关键词
embrittlement temperature range; hot ductility evolution mechanism; precipitation behavior of titanium carbonitride particles; slab surface cracks; titanium-bearing microalloyed steels; TRANSVERSE CORNER CRACKS; DYNAMIC RECRYSTALLIZATION; PRECIPITATION BEHAVIOR; TI; NB; ALLOY; SN;
D O I
10.1002/srin.202200871
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Titanium-bearing (Ti-bearing) microalloyed steels have high strength and toughness by grain refinement effect of carbonitride precipitates. However, they can induce surface cracks of continuous casting slab when the Ti alloyed content is high. A microalloyed steel with Ti content (0.10-0.15 wt%) is carried out by thermalmechanical simulator over 600-1350 & DEG;C to analyze hot ductility evolution mechanism. Fracture surface morphology, phase transition, and behavior of precipitates of the tensile samples are investigated by experimental detection and thermodynamic calculation. The ductility-temperature curves show that the third brittle temperature range is 600-890 & DEG;C, which is mainly attributed to the thin proeutectoid ferrite film and precipitated titanium carbonitride particles, widening the embrittlement temperature ranges through of steel. In addition, the tensile samples at 890-1350 & DEG;C have good hot ductility, indicating the dynamic recrystallization of deformed austenite can trigger grain boundaries migration away from cracks and avoid the side effect of the Ti (C,N) particles on hot ductility. The first brittle temperature range of 1350 & DEG;C-melting point is mainly ascribed to the partial melting of the grain boundaries with element segregation of sulfur and phosphorus, and microporosity loose among dendrites.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] HOT DUCTILITY OF TITANIUM-ALLOYS - A COMPARISON WITH CARBON-STEELS
    SUZUKI, HG
    EYLON, D
    ISIJ INTERNATIONAL, 1993, 33 (12) : 1270 - 1274
  • [42] Titanium-bearing synthetic alexandrite and chrysoberyl
    Bernhardt, Heinz-Juergen
    Hainschwang, Thomas
    Schmetzer, Dr Karl
    JOURNAL OF GEMMOLOGY, 2013, 33 (5-6) : 137 - 148
  • [43] MODELING THE EVOLUTION OF MICROSTRUCTURE DURING HOT TORSION OF NIOBIUM MICROALLOYED STEELS
    LIU, XD
    SOLBERG, JK
    GJENGEDAL, R
    KLUKEN, AO
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1994, 45 (1-4) : 497 - 502
  • [44] HOT DUCTILITY OF NB AND AL MICROALLOYED STEELS FOLLOWING HIGH-TEMPERATURE SOLUTION TREATMENT
    WILCOX, JR
    HONEYCOMBE, RWK
    METALS TECHNOLOGY, 1984, 11 (JUN): : 217 - 225
  • [45] Characterization of Grain-boundary Precipitates after Hot-ductility Tests of Microalloyed Steels
    Vedani, Maurizo
    Dellasega, David
    Mannuccii, Aldo
    ISIJ INTERNATIONAL, 2009, 49 (03) : 446 - 452
  • [46] Hot ductility of stainless steels
    Ryan, ND
    HOT WORKABILITY OF STEELS & LIGHT ALLOYS-COMPOSITES, 1996, : 411 - 424
  • [47] Hot ductility of tool steels
    Imbert, CAC
    McQueen, HJ
    CANADIAN METALLURGICAL QUARTERLY, 2001, 40 (02) : 235 - 244
  • [48] Hot ductility of TWIP steels
    Kang, S. E.
    Tuling, A.
    Banerjee, J. R.
    Gunawardana, W. D.
    Mintz, B.
    MATERIALS SCIENCE AND TECHNOLOGY, 2011, 27 (01) : 95 - 100
  • [49] AKTIUBINSK PRIURALIE - NEW TITANIUM-BEARING PROVINCE
    VELIKII, NM
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (03): : 708 - 711
  • [50] Mechanism and kinetics study of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag
    Nie W.
    Wen S.
    Feng Q.
    Liu D.
    Zhou Y.
    Journal of Materials Research and Technology, 2020, 9 (02) : 1750 - 1758