Hot Ductility Evolution Mechanism of Titanium-Bearing Microalloyed Steels

被引:1
|
作者
Liu, Peng [1 ,2 ]
Zheng, Wan [1 ,2 ]
Li, Guangqiang [1 ,2 ]
Zhang, Huirong [1 ,2 ]
Zhang, Wenwen [1 ,2 ]
Wang, Chunfeng [3 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Key Lab Ferrous Met & Resources Utilizat, Minist Educ, Wuhan 430081, Peoples R China
[3] Baosteel Wuhan Iron & Steel Co Ltd, CSP Hot Rolling Sheet Plant, Wuhan 430083, Peoples R China
基金
中国国家自然科学基金;
关键词
embrittlement temperature range; hot ductility evolution mechanism; precipitation behavior of titanium carbonitride particles; slab surface cracks; titanium-bearing microalloyed steels; TRANSVERSE CORNER CRACKS; DYNAMIC RECRYSTALLIZATION; PRECIPITATION BEHAVIOR; TI; NB; ALLOY; SN;
D O I
10.1002/srin.202200871
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Titanium-bearing (Ti-bearing) microalloyed steels have high strength and toughness by grain refinement effect of carbonitride precipitates. However, they can induce surface cracks of continuous casting slab when the Ti alloyed content is high. A microalloyed steel with Ti content (0.10-0.15 wt%) is carried out by thermalmechanical simulator over 600-1350 & DEG;C to analyze hot ductility evolution mechanism. Fracture surface morphology, phase transition, and behavior of precipitates of the tensile samples are investigated by experimental detection and thermodynamic calculation. The ductility-temperature curves show that the third brittle temperature range is 600-890 & DEG;C, which is mainly attributed to the thin proeutectoid ferrite film and precipitated titanium carbonitride particles, widening the embrittlement temperature ranges through of steel. In addition, the tensile samples at 890-1350 & DEG;C have good hot ductility, indicating the dynamic recrystallization of deformed austenite can trigger grain boundaries migration away from cracks and avoid the side effect of the Ti (C,N) particles on hot ductility. The first brittle temperature range of 1350 & DEG;C-melting point is mainly ascribed to the partial melting of the grain boundaries with element segregation of sulfur and phosphorus, and microporosity loose among dendrites.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] THE HOT DEFORMATION OF PLAIN CARBON AND COLUMBIUM-BEARING MICROALLOYED STEELS
    ALVARADO, PJ
    WEISS, I
    DEARDO, AJ
    JOURNAL OF METALS, 1980, 32 (08): : 25 - 25
  • [32] Hot ductility behavior of V-N and V-Nb microalloyed steels
    Bing-hua Chen and Hao Yu School of Materials Science and Engineering
    InternationalJournalofMineralsMetallurgyandMaterials, 2012, 19 (06) : 525 - 529
  • [33] Effect of Vanadium and Strain Rate on Hot Ductility of Low-Carbon Microalloyed Steels
    Song, Siying
    Tian, Junyu
    Xiao, Juan
    Fan, Lei
    Yang, Yuebiao
    Yuan, Qinpan
    Gan, Xiaolong
    Xu, Guang
    METALS, 2022, 12 (01)
  • [34] Hot ductility behavior of V-N and V-Nb microalloyed steels
    Chen, Bing-hua
    Yu, Hao
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2012, 19 (06) : 525 - 529
  • [35] Hot ductility behavior of V-N and V-Nb microalloyed steels
    Bing-hua Chen
    Hao Yu
    International Journal of Minerals, Metallurgy, and Materials, 2012, 19 : 525 - 529
  • [36] Reaction mechanism of titanium-bearing steel slag roasting in NaOH melt
    Zhao C.
    Ning Z.
    Zhang C.
    Cai Y.
    Wang Y.
    Shao P.
    Li J.
    Zhao, Changming (lnzhaochangming@163.com), 2018, Central South University of Technology (49): : 2908 - 2914
  • [37] STRUCTURAL TRANSFORMATIONS IN TITANIUM-BEARING SILICATES
    SUSHKO, RV
    GEMME, AV
    MIRONYUK, IF
    CHUIKO, AA
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1983, 56 (06): : 1155 - 1159
  • [38] Physicochemical Study of Titanium-Bearing Garnets
    L. P. Ogorodova
    Yu. D. Gritsenko
    M. F. Vigasina
    V. S. Rusakov
    L. V. Melchakova
    A. Yu. Bychkov
    D. A. Ksenofontov
    Geochemistry International, 2022, 60 : 363 - 378
  • [39] Physicochemical Study of Titanium-Bearing Garnets
    Ogorodova, L. P.
    Gritsenko, Yu D.
    Vigasina, M. F.
    Rusakov, V. S.
    Melchakova, L., V
    Bychkov, A. Yu
    Ksenofontov, D. A.
    GEOCHEMISTRY INTERNATIONAL, 2022, 60 (04) : 363 - 378
  • [40] Mechanism and kinetics of the carbothermic reduction of titanium-bearing blast furnace slag
    Zhen, Yu-Lan
    Zhang, Guo-Hua
    Chou, Kuo-Chih
    METALLURGICAL RESEARCH & TECHNOLOGY, 2016, 113 (05)