EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning

被引:13
|
作者
Tu, Jia-Juan [1 ]
Li, Hui-Sheng [1 ,2 ,3 ]
Yan, Hong [1 ,4 ]
Zhang, Xiao-Fei [2 ,3 ]
机构
[1] Ctr Intelligent Multidimens Data Anal, Hong Kong Sci Pk, Hong Kong 999077, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Dept Stat, Wuhan 430079, Peoples R China
[3] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[4] City Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
ATLAS;
D O I
10.1093/bioinformatics/btac825
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Spatially resolved gene expression profiles are the key to exploring the cell type spatial distributions and understanding the architecture of tissues. Many spatially resolved transcriptomics (SRT) techniques do not provide single-cell resolutions, but they measure gene expression profiles on captured locations (spots) instead, which are mixtures of potentially heterogeneous cell types. Currently, several cell-type deconvolution methods have been proposed to deconvolute SRT data. Due to the different model strategies of these methods, their deconvolution results also vary. Results: Leveraging the strengths of multiple deconvolution methods, we introduce a new weighted ensemble learning deconvolution method, EnDecon, to predict cell-type compositions on SRT data in this work. EnDecon integrates multiple base deconvolution results using a weighted optimization model to generate a more accurate result. Simulation studies demonstrate that EnDecon outperforms the competing methods and the learned weights assigned to base deconvolution methods have high positive correlations with the performances of these base methods. Applied to real datasets from different spatial techniques, EnDecon identifies multiple cell types on spots, localizes these cell types to specific spatial regions and distinguishes distinct spatial colocalization and enrichment patterns, providing valuable insights into spatial heterogeneity and regionalization of tissues. Availability and implementation : The source code is available at https://github.com/Zhangxf-ccnu/EnDecon. Contact: zhangxf@ccnu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Computational deconvolution of transcriptomics data from mixed cell populations
    Cobos, Francisco Avila
    Vandesompele, Jo
    Mestdagh, Pieter
    De Preter, Katleen
    BIOINFORMATICS, 2018, 34 (11) : 1969 - 1979
  • [42] SpatialExperiment: infrastructure for spatially-resolved transcriptomics data in R using Bioconductor
    Righelli, Dario
    Weber, Lukas M.
    Crowell, Helena L.
    Pardo, Brenda
    Collado-Torres, Leonardo
    Ghazanfar, Shila
    Lun, Aaron T. L.
    Hicks, Stephanie C.
    Risso, Davide
    BIOINFORMATICS, 2022, 38 (11) : 3128 - 3131
  • [43] BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data
    Guo, Yanghong
    Zhu, Bencong
    Tang, Chen
    Rong, Ruichen
    Ma, Ying
    Xiao, Guanghua
    Xu, Lin
    Li, Qiwei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [44] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Brenda Pardo
    Abby Spangler
    Lukas M. Weber
    Stephanie C. Page
    Stephanie C. Hicks
    Andrew E. Jaffe
    Keri Martinowich
    Kristen R. Maynard
    Leonardo Collado-Torres
    BMC Genomics, 23
  • [45] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Pardo, Brenda
    Spangler, Abby
    Weber, Lukas M.
    Page, Stephanie C.
    Hicks, Stephanie C.
    Jaffe, Andrew E.
    Martinowich, Keri
    Maynard, Kristen R.
    Collado-Torres, Leonardo
    BMC GENOMICS, 2022, 23 (01)
  • [46] Categorization of 34 computational methods to detect spatially variable genes from spatially resolved transcriptomics data
    Yan, Guanao
    Hua, Shuo Harper
    Li, Jingyi Jessica
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [47] SSMD: a semi-supervised approach for a robust cell type identification and deconvolution of mouse transcriptomics data
    Lu, Xiaoyu
    Tu, Szu-Wei
    Chang, Wennan
    Wan, Changlin
    Wang, Jiashi
    Zang, Yong
    Ramdas, Baskar
    Kapur, Reuben
    Lu, Xiongbin
    Cao, Sha
    Zhang, Chi
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [48] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Agnieszka Geras
    Shadi Darvish Shafighi
    Kacper Domżał
    Igor Filipiuk
    Alicja Rączkowska
    Paulina Szymczak
    Hosein Toosi
    Leszek Kaczmarek
    Łukasz Koperski
    Jens Lagergren
    Dominika Nowis
    Ewa Szczurek
    Genome Biology, 24
  • [49] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Geras, Agnieszka
    Shafighi, Shadi Darvish
    Domzal, Kacper
    Filipiuk, Igor
    Raczkowski, Lukasz
    Szymczak, Paulina
    Toosi, Hosein
    Kaczmarek, Leszek
    Koperski, Lukasz
    Lagergren, Jens
    Nowis, Dominika
    Szczurek, Ewa
    GENOME BIOLOGY, 2023, 24 (01)
  • [50] Deep-Learning Based Cell Segmentation and Deconvolution in Spatial Transcriptomics
    Kamel, Mena
    Sarangi, Amrut
    Qin, Cindy
    Barot, Het
    Senin, Pavel
    Villordo, Sergio
    Mathew, Sunaal
    Planas, Albert Pla
    Bar-Joseph, Ziv
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,