Median-Krum: A Joint Distance-Statistical Based Byzantine-Robust Algorithm in Federated Learning

被引:8
|
作者
Colosimo, Francesco [1 ]
De Rango, Floriano [1 ]
机构
[1] Univ Calabria, Dept Informat Modeling Elect & Syst DIMES, Arcavacata Di Rende, Italy
关键词
Federated Learning; Machine Learning; Byzantine attack; security; model poisoning attack;
D O I
10.1145/3616390.3618283
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The wide spread of Artificial Intelligence-based services in recent years has encouraged research into new Machine Learning paradigms. Federated Learning (FL) represents a new distributed approach capable of achieving higher privacy and security guarantees than other methodologies since it allows multiple users to collaboratively train a global model without sharing their local training data. In this paper, an analysis of the characteristics of Federated Learning is therefore carried out, with a particular focus on security aspects. In detail, currently known vulnerabilities and their respective countermeasures are investigated, focusing on aggregation algorithms that provide robustness against Byzantine failures. Following this direction, Median-Krum is proposed as a new aggregation algorithm whose validity is observed on a set of simulations that recreate realistic scenarios, in the absence and presence of Byzantine adversaries. It combines the Distance-based Krum approach with the Statistical strategy of median based aggregation algorithm. Achieved results demonstrate the functionality of the proposed solutions in terms of accuracy and convergence rounds in comparison with FedAvg, Krum, Multi-Krum and Fed-Median FL approaches under a correct and incorrect estimation of the attackers number.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [41] Byzantine-robust Federated Learning through Collaborative Malicious Gradient Filtering
    Xu, Jian
    Huang, Shao-Lun
    Song, Linqi
    Lan, Tian
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 1223 - 1235
  • [42] Byzantine-Robust Multimodal Federated Learning Framework for Intelligent Connected Vehicle
    Wu, Ning
    Lin, Xiaoming
    Lu, Jianbin
    Zhang, Fan
    Chen, Weidong
    Tang, Jianlin
    Xiao, Jing
    ELECTRONICS, 2024, 13 (18)
  • [43] Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
    Yin, Dong
    Chen, Yudong
    Ramchandran, Kannan
    Bartlett, Peter
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [44] FLGuard: Byzantine-Robust Federated Learning via Ensemble of Contrastive Models
    Lee, Younghan
    Cho, Yungi
    Han, Woorim
    Bae, Ho
    Paek, Yunheung
    COMPUTER SECURITY - ESORICS 2023, PT IV, 2024, 14347 : 65 - 84
  • [45] FedInv: Byzantine-Robust Federated Learning by Inversing Local Model Updates
    Zhao, Bo
    Sun, Peng
    Wang, Tao
    Jiang, Keyu
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9171 - 9179
  • [46] BFLMeta: Blockchain-Empowered Metaverse with Byzantine-Robust Federated Learning
    Vu Tuan Truong
    Hoang, Duc N. M.
    Long Bao Le
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5537 - 5542
  • [47] Using Third-Party Auditor to Help Federated Learning: An Efficient Byzantine-Robust Federated Learning
    Zhang, Zhuangzhuang
    Wu, Libing
    He, Debiao
    Li, Jianxin
    Lu, Na
    Wei, Xuejiang
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 848 - 861
  • [48] Defense against local model poisoning attacks to byzantine-robust federated learning
    Shiwei Lu
    Ruihu Li
    Xuan Chen
    Yuena Ma
    Frontiers of Computer Science, 2022, 16
  • [49] Efficient Byzantine-Robust and Privacy-Preserving Federated Learning on Compressive Domain
    Hu, Guiqiang
    Li, Hongwei
    Fan, Wenshu
    Zhang, Yushu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 7116 - 7127
  • [50] Byzantine-Robust Federated Learning via Server-Side Mixtue of Experts
    Li, Jing (lj@ustc.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (14326 LNAI):