Median-Krum: A Joint Distance-Statistical Based Byzantine-Robust Algorithm in Federated Learning

被引:8
|
作者
Colosimo, Francesco [1 ]
De Rango, Floriano [1 ]
机构
[1] Univ Calabria, Dept Informat Modeling Elect & Syst DIMES, Arcavacata Di Rende, Italy
关键词
Federated Learning; Machine Learning; Byzantine attack; security; model poisoning attack;
D O I
10.1145/3616390.3618283
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The wide spread of Artificial Intelligence-based services in recent years has encouraged research into new Machine Learning paradigms. Federated Learning (FL) represents a new distributed approach capable of achieving higher privacy and security guarantees than other methodologies since it allows multiple users to collaboratively train a global model without sharing their local training data. In this paper, an analysis of the characteristics of Federated Learning is therefore carried out, with a particular focus on security aspects. In detail, currently known vulnerabilities and their respective countermeasures are investigated, focusing on aggregation algorithms that provide robustness against Byzantine failures. Following this direction, Median-Krum is proposed as a new aggregation algorithm whose validity is observed on a set of simulations that recreate realistic scenarios, in the absence and presence of Byzantine adversaries. It combines the Distance-based Krum approach with the Statistical strategy of median based aggregation algorithm. Achieved results demonstrate the functionality of the proposed solutions in terms of accuracy and convergence rounds in comparison with FedAvg, Krum, Multi-Krum and Fed-Median FL approaches under a correct and incorrect estimation of the attackers number.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [31] SEAR: Secure and Efficient Aggregation for Byzantine-Robust Federated Learning
    Zhao, Lingchen
    Jiang, Jianlin
    Feng, Bo
    Wang, Qian
    Shen, Chao
    Li, Qi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (05) : 3329 - 3342
  • [32] FLForest: Byzantine-robust Federated Learning through Isolated Forest
    Wang, Tao
    Zhao, Bo
    Fang, Liming
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 296 - 303
  • [33] Byzantine-robust Federated Learning via Cosine Similarity Aggregation
    Zhu, Tengteng
    Guo, Zehua
    Yao, Chao
    Tan, Jiaxin
    Dou, Songshi
    Wang, Wenrun
    Han, Zhenzhen
    COMPUTER NETWORKS, 2024, 254
  • [34] Byzantine-Robust and Communication-Efficient Personalized Federated Learning
    Zhang, Jiaojiao
    He, Xuechao
    Huang, Yue
    Ling, Qing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 26 - 39
  • [35] Byzantine-Robust and Privacy-Preserving Federated Learning With Irregular Participants
    Chen, Yinuo
    Tan, Wuzheng
    Zhong, Yijian
    Kang, Yulin
    Yang, Anjia
    Weng, Jian
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 35193 - 35205
  • [36] FedNAT: Byzantine-robust Federated Learning through Activation-based Attention Transfer
    Wang, Mengxin
    Fang, Liming
    Chen, Kuiqi
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1005 - 1012
  • [37] RSAM: Byzantine-Robust and Secure Model Aggregation in Federated Learning for Internet of Vehicles Using Private Approximate Median
    He, Yuanyuan
    Li, Peizhi
    Ni, Jianbing
    Deng, Xianjun
    Lu, Hongwei
    Zhang, Jie
    Yang, Laurence T.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 6714 - 6726
  • [38] Communication-Efficient and Byzantine-Robust Differentially Private Federated Learning
    Li, Min
    Xiao, Di
    Liang, Jia
    Huang, Hui
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (08) : 1725 - 1729
  • [39] Byzantine-robust federated learning over Non-IID data
    Ma X.
    Li Q.
    Jiang Q.
    Ma Z.
    Gao S.
    Tian Y.
    Ma J.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (06): : 138 - 153
  • [40] Byzantine-Robust Privacy-Preserving Federated Learning Based on DT-PKC
    Jiang, Wenhao
    Fu, Shaojing
    Luo, Yuchuan
    Liu, Lin
    Wang, Yongjun
    FRONTIERS IN CYBER SECURITY, FCS 2023, 2024, 1992 : 205 - 219