Optimization of vibration control using a hybrid scheme with sliding-mode and positive position feedback

被引:1
|
作者
Enriquez-Zarate, J. [1 ,7 ]
Gomez-Penate, S. [2 ]
Hernandez, C. [3 ]
Villarreal-Valderrama, Francisco [4 ]
Velazquez, R. [5 ]
Trujillo, Leonardo [6 ]
机构
[1] AP Engn Innovac Tecnol Energias SA CV, Ixtepec, Oaxaca, Mexico
[2] Tecnol Nacl Mexico, Inst Tecnol Tuxtla Gutierrez, Tuxtla Gutierrez, Mexico
[3] IIMAS UNAM, Dept Comp, Mexico City, Mexico
[4] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Monterrey, Nuevo Leon, Mexico
[5] Univ Panamer, Fac Ingn, Aguascalientes, Aguascalientes, Mexico
[6] Tecnol Nacl Mexico, IT Tijuana, Tijuana 22414, Mexico
[7] AP Engn Innovac Tecnol Energias SA CV, Sexta Secc, Cd Ixtepec, Oaxaca, Mexico
来源
关键词
active vibration control; nonlinear system; optimization; positive position feedback; sliding mode control; SUPPRESSION; SYSTEM;
D O I
10.1002/oca.3086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the design of a nonlinear hybrid controller for an underactuated Duffing oscillator with 2 degrees of freedom. The main control purpose is to reduce the frequency-response to specific resonant-frequencies while maintaining its robustness to external disturbances. The resulting hybrid controller uses sliding mode control (SMC) with a positive position feedback (PPF) scheme. This is structured such that the SMC provides system robustness and tracking, while the PPF allows damping specific resonant frequencies. The system was evaluated using frequency sweeps in terms of acceleration in the second degree of freedom. In this case, the control input is applied through the first degree of freedom. Moreover, multi-objective optimization is implemented to tune of the control parameters. Simulation results show that the system response to external vibrations can be reduced up to 83.88% by using the proposed PPF + SMC scheme.
引用
收藏
页码:1030 / 1044
页数:15
相关论文
共 50 条
  • [31] Adaptive Sliding-Mode Position Control for Dielectric Elastomer Actuators
    Hoffstadt, Thorben
    Maas, Juergen
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (05) : 2241 - 2251
  • [32] Feedback linearization sliding-mode torque control of an induction machine
    Chen, F
    Dunnigan, MW
    INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, MACHINES AND DRIVES, 2002, (487): : 110 - 115
  • [33] Control of sliding-isolated buildings using sliding-mode control
    Yang, JN
    Wu, JC
    Reinhorn, AM
    Riley, M
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1996, 122 (02): : 179 - 186
  • [34] Sliding-mode control scheme for a class of continuous chemical reactors
    Aguilar-López, R
    Alvarez-Ramírez, J
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2002, 149 (04): : 263 - 268
  • [35] Chaos control using sliding-mode theory
    Nazzal, Jamal M.
    Natsheh, Ammar N.
    CHAOS SOLITONS & FRACTALS, 2007, 33 (02) : 695 - 702
  • [36] Vibration control of a structure using sliding-mode hedge-algebras-based controller
    Duc-Trung Tran
    Van-Binh Bui
    Tung-Anh Le
    Hai-Le Bui
    Soft Computing, 2019, 23 : 2047 - 2059
  • [37] Vibration control of a structure using sliding-mode hedge-algebras-based controller
    Duc-Trung Tran
    Van-Binh Bui
    Tung-Anh Le
    Hai-Le Bui
    SOFT COMPUTING, 2019, 23 (06) : 2047 - 2059
  • [38] Vibration Control Using Input Shaping and Adaptive Positive Position Feedback
    Orszulik, Ryan R.
    Shan, Jinjun
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2011, 34 (04) : 1031 - 1044
  • [39] Vibration control of composite beams using adaptive position positive feedback
    Malik, Nihal
    Neild, Simon
    Wagg, David
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 863 - 871
  • [40] On a new sliding-mode differentiation scheme
    Orani, N.
    Pisano, A.
    Usai, E.
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 2815 - +