Optimization of vibration control using a hybrid scheme with sliding-mode and positive position feedback

被引:1
|
作者
Enriquez-Zarate, J. [1 ,7 ]
Gomez-Penate, S. [2 ]
Hernandez, C. [3 ]
Villarreal-Valderrama, Francisco [4 ]
Velazquez, R. [5 ]
Trujillo, Leonardo [6 ]
机构
[1] AP Engn Innovac Tecnol Energias SA CV, Ixtepec, Oaxaca, Mexico
[2] Tecnol Nacl Mexico, Inst Tecnol Tuxtla Gutierrez, Tuxtla Gutierrez, Mexico
[3] IIMAS UNAM, Dept Comp, Mexico City, Mexico
[4] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Monterrey, Nuevo Leon, Mexico
[5] Univ Panamer, Fac Ingn, Aguascalientes, Aguascalientes, Mexico
[6] Tecnol Nacl Mexico, IT Tijuana, Tijuana 22414, Mexico
[7] AP Engn Innovac Tecnol Energias SA CV, Sexta Secc, Cd Ixtepec, Oaxaca, Mexico
来源
关键词
active vibration control; nonlinear system; optimization; positive position feedback; sliding mode control; SUPPRESSION; SYSTEM;
D O I
10.1002/oca.3086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the design of a nonlinear hybrid controller for an underactuated Duffing oscillator with 2 degrees of freedom. The main control purpose is to reduce the frequency-response to specific resonant-frequencies while maintaining its robustness to external disturbances. The resulting hybrid controller uses sliding mode control (SMC) with a positive position feedback (PPF) scheme. This is structured such that the SMC provides system robustness and tracking, while the PPF allows damping specific resonant frequencies. The system was evaluated using frequency sweeps in terms of acceleration in the second degree of freedom. In this case, the control input is applied through the first degree of freedom. Moreover, multi-objective optimization is implemented to tune of the control parameters. Simulation results show that the system response to external vibrations can be reduced up to 83.88% by using the proposed PPF + SMC scheme.
引用
收藏
页码:1030 / 1044
页数:15
相关论文
共 50 条
  • [21] Neural Adaptive Sliding-Mode Control of a Vehicle Platoon Using Output Feedback
    Yan, Maode
    Song, Jiacheng
    Zuo, Lei
    Yang, Panpan
    ENERGIES, 2017, 10 (11):
  • [22] An Improved Sliding-Mode Repetitive Learning Control Scheme Using Wavelet Transform
    Lu, Yu-Sheng
    Wu, Bing-Xuan
    Lien, Shu-Fen
    ASIAN JOURNAL OF CONTROL, 2012, 14 (04) : 991 - 1001
  • [23] Suppression of heavy-truck driver-seat vibration using sliding-mode control and quantitative feedback theory
    Rajapakse, N. I.
    Happawana, G. S.
    Hurmuzlu, Y.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2007, 221 (I5) : 769 - 779
  • [24] Hybrid fuzzy sliding-mode control of an aeroelastic system
    Lin, CM
    Hsu, CF
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2002, 25 (04) : 829 - 832
  • [25] Improved Sliding-Mode Observer for Position Sensorless Control of PMSM
    Zhou, Changpan
    Zhou, Zhaoji
    Tang, Wei
    Yu, Zhongwei
    Sun, Xiangdong
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2374 - 2378
  • [26] Robust sliding-mode tip position control for flexible arms
    Chen, XK
    Fukuda, T
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (06) : 1048 - 1056
  • [27] PERFORMANCE OPTIMIZATION OF CUK CONVERTERS BY SLIDING-MODE CONTROL
    MALESANI, L
    ROSSETTO, L
    SPIAZZI, G
    TENTI, P
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 1995, 10 (03) : 302 - 309
  • [28] Position-Sensorless Hybrid Sliding-Mode Control of Electric Vehicles With Brushless DC Motor
    Wang, Yaonan
    Zhang, Xizheng
    Yuan, Xiaofang
    Liu, Guorong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (02) : 421 - 432
  • [29] Output feedback and dynamical sliding-mode control of power converters
    Cortes, Domingo
    Alvarez, Jaime
    Alvarez, Joaquin
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2011, 98 (04) : 505 - 519
  • [30] Discrete output feedback sliding-mode control with integral action
    Lai, NO
    Edwards, C
    Spurgeon, SK
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2006, 16 (01) : 21 - 43